Дана квадратичная функция h(t)=24t−4t², графиком которой является парабола, ветви которой направлены вниз. Функция своего наибольшего значения достигает в вершине параболы.Чтобы определить максимальную высоту, надо найти координату Y вершины (в данном задании это h).Чтобы определить время, в течение которого мяч летит вверх, надо найти координату X вершины (в данном задании это t). Все время полета мяча будет в 2 раза больше.x₀=t₀=(−b)/2а =−24 /2(-4) = 3 секунды. Время, через которое мяч упадет на землю, равно 2⋅t₀=2⋅3=6 секунд.y₀=h₀= 24⋅3-4⋅3²=72-36=36 метров.
Решение: Обозначим знаменатель дроби за (а), тогда числитель дроби равен (а-3) и сама дробь представляет: (а-3)/а Если к числителю прибавим 3, то числитель станет равным: (а-3+3)=а, а к знаменателю прибавим два знаменатель примет значение: (а+2) сама дробь представит в виде: а/(а+2) А так как получившаяся дробь увеличится на 7/40 , составим уравнение: а/(а+2) - (а-3)/а=7/40 Приведём уравнение к общему знаменателю (а+2)*а*40 а*40*а - 40*(а+2)*(а-3)=7*(а+2)*а 40а²- 40*(а²+2а-3а-6)=7*(а²+2а) 40а²-40а²+40а+240=7а²+14а 7а²+14а-40а-240=0 7а²-26а-240=0 а1,2=(26+-D)/2*7 D=√(26²-4*7*-240)=√(676+6720)=√7396=86 а1,2=(26+-86)/14 а1=(26+86)/14=112/14=8 а2=(26-86)/14=-60/14=-4 1/15 - не соответствует условию задачи Подставим значение а=8 в дробь (а-3)/а (8-3)/8=5/8