X(x^3 + 125) = (x^2+5x)(x^2 - 5x + 25) Раскроем выражение слева по формуле суммы кубов a^3 + b^3 = (a+b)(a^2-ab+b^2), а в правой части вынесем х x(x+5)(x^2-5x+25) = x(x+5)(x^2-5x+25)
1) Ставим 1 том первым. Вторым может быть любой, кроме 4. Это 4 варианта. Остальные 4 тома ставим как угодно. Это 24 варианта. Всего 24*4 = 96 вариантов. 2) Ставим 1 том вторым. Первый - любой, кроме 4. Это 4 варианта. Третьим - тоже любой оставшийся, кроме 4. Это 3 варианта. Остальные 3 тома как угодно. Это 6 вариантов. Всего 4*3*6 = 72 варианта. 3) Ставим 1 том третьим. Первый - какой угодно, это 5 вариантов. Второй - любой, кроме 4. Это 3 варианта. Четвертый - тоже любой, кроме 4. Это 2 варианта. Пятый и шестой - какие угодно. Это 2 варианта. Всего 5*3*2*2 = 60 вариантов. 4) Ставим 1 том четвертым. Это аналогично 3). 60 вариантов. 5) Ставим 1 том пятым. Это аналогично 2). 72 варианта. 6) Ставим 1 том последним. Это аналогично 1). 96 вариантов. Итого 96 + 72 + 60 + 60 + 72 + 96 = 396 вариантов.
D:xпринадлежит R. y принадлежит R Возьмите производную и приравняйте нулю=>найдете точки, в которых есть экстремум. Если производная меняет знак с + на - ,то это максимум, если с - на +, то минимум. Где + в интервале функция возрастает, где минус - убывает. Ищите вторую производную и приравняйте нулю=> найдете точки перегиба. Если + на интервале a,b, то функция выпуклая вниз, если -, то выпуклая вверх. Если меняется знак, то это точка перегиба. Потом смотрите предел функции при x на беск-ть на наличие верт. ассимпоты, а также посмотрите k и b на наличие наклонной ассимптоты. k=lim(f(x)/x) b=lim(f(x)-kx) где x->беск-ть. А дальше выберайте точки какие-нибудь и стройте в соответствии с тем, что уже нашли.
Раскроем выражение слева по формуле суммы кубов a^3 + b^3 = (a+b)(a^2-ab+b^2), а в правой части вынесем х
x(x+5)(x^2-5x+25) = x(x+5)(x^2-5x+25)