Пронумеруем книги от 1 до 666.
Рассмотрим последовательности книг 1 + 14i, 2 + 14i, 3 + 14i, ... 14 + 14i, всего 14 последовательностей.
Если длина последовательности k = 2m, то книг по белой магии в ней может быть не более m, а если k = 2m + 1, то не более m + 1 (все книги по белой магии будут стоять на нечетных местах)
Определим сколько у нас будет последовательностей и какой длины.
Т.к. 666 = 14 * 47 + 8, то у нас 6 последовательностей длины 47 и 8 последовательностей длины 48. Всего книг по белой магии может быть:
K = 8 * 24 + 6 * 24 = 14 * 24 = 336
1. √27=√9•3=√3²•3
Выносим 3 за корень. Получаем 3√3
Сравниваем выражения:
3√3<4√3
2.В первом выражении вносим 3 под корень:
√3²•2=√9•2=√18
Во втором выражении вносим 2 под корень:
√2²•3=√4•3=√12
Сравниваем выражения:
√18>√12
3.√y^3(в степени 3)=√y²•y=y√y
4.√7y^8=√7•(y^4)²
Выносим у в степени 4 из-под корня:
у^4√7
d = 2
Sn = 84
n = ?
(2a1 + d(n - 1))/2*n = 84
( - 8 + 2(n - 1))/2*n = 84
(- 8 + 2n - 2)/2*n = 84
(2n - 10)/2*n = 84
(n - 5)*n = 84
n^2 - 5n - 84 = 0
D = 25 + 4*84 = 361 = 19^2
n1 = (5 + 19)/2 = 12
n2 < 0 не удовлетворяет
ОТВЕТ
12