1). В числителе стоит формула квадратов: (6а-1)^2; В знаменателе записываем: 6а^2+12а-а-2. Выносим общие множители: 6а(а+2) - (а+2). Дальше: (6а-1)*(а+2) (почему так? Потому что (а+2) - общая скобка, а 6а и -1 это общие множители этих скобок.); (6а-1) сократится, будет 6а-1/а+2; 6а - 1/а + 2. 2). -х^2 - 2х + 8 》0; D = 4 - 4*(-1)*8 = 4 + 32 = 36; x1 = 2; x2 = -4. Ветви параболы направлены вниз. Без чертежа неравенство не имеет смысла! Функция больше 0 => всё, что выше и есть решения неравенства. ответ: [-4;2] или -4《 х 《 2.
Порядок числа а - (-5), при умножении на 10, это число станет (-4) порядка, это дробь, у которой есть десятитысячные доли, например: 2,7*10^(-4); если прибавить число 4 порядка, то порядок суммы не изменится. В числе В есть десятки тысяч, от прибавления десятичной дроби они не изменятся. Например: числа 1,0*10^4 - число 4 порядка; 9,765*10^4 -число 4 порядка. Это стандартная запись числа. От прибавления малюсенькой дроби сумма останется 4 порядка. ответ: сумма 4 порядка. Частный случай: при В=9,99999999, а далее любые цифры, при прибавлении числа (-4) порядка, в сумме получим число 5 порядка, т.к. в ответе будет 10,0000000*10^4=1,00000000*10^5. ответ: сумма 4 порядка, но в частном случае сумма может стать 5 порядка.