Область определения функции - это та область(множество значений), где функция вообще существует(определена). У вас функция вида y = √(x). Корень квадратный не может быть меньше нуля(может на самом деле, но это совсем другая история), значит и Ваша функция не может быть меньше нуля! Давайте найдем область определения: y = √(x-1)(x+2) √(x-1)(x+2) >= 0 (больше либо равно 0) Значит и (x-1)(x+2)>=0 Решаем неравенство Пусть (x-1)(x+2) = 0 Мы видим два корня х = 1 и х = -2 Отмечаем их на числовой прямой (-2)(1) Наносим знаки слева направо с + +___(-2)-(1)+ Поскольку нам нужны интервалы больше 0, то выбираем +. Это и будет областью определения. ответ: x <= -2 x >= 1 Еще можно записать ответ так: (-бесконечность; -2] и [1;+бесконечность) Квадратные скобки означают, что данное значение входит в область определения. Записывает как вам удобно.
Так как AK - биссектриса, то: при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки: ищем длины AB и AC: используем формулу: находим координаты точки K: теперь определим вид треугольника для этого используем теорему косинусов: для начала найдем длину BC: вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый. Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для AC и косинуса угла B подставим значения: cosB<0 поэтому угол тупой и треугольник тупоугольный ответ: треугольник тупоугольный
1/4x^2+a-3=0
D=b^2-4ac
D=1+12/4=1+3=4
1)A1=-b-кореньD/2a=-1-корень4/1/2=-3/1/2=-6
2)A2+-b+кореньD/2a=-1+2/1/2=1/1/2=2
ответ:при А=-6 и 2