1 Число делится на 11, если знакопеременная сумма его цифр (последняя цифра со знаком +) делится на 11.
2 Число делится на 7, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 7.
3 Число делится на 13, если знакопеременная сумма чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +), делится на 13.
4 Остаток от деления числа на 11 равен остатку от деления на 11 знакопеременной суммы его цифр (последняя цифра со знаком +)
5 Остаток от деления числа на 7 равен остатку от деления на 7 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).
6 Остаток от деления числа на 13 равен остатку от деления на 13 знакопеременной суммы чисел, образованных тройками его цифр, взятыми с конца (последнее число со знаком +).
7 Для доказательства необходимо рассмотреть разность между самим числом и знакопеременной суммой его цифр (троек).Комментарии
Пусть скорость горной реки х
Плот плывет по реке 21 км в течение 21:х часов
Туристы на лодке все расстояние проплыли за такое же время:
54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х
Составим и решим уравнение:
54:(12+х) +0,5 =21:х
Умножим обе части на х(12+х), чтобы избавиться от дробей:
54х +0,5х(12+х) =21(12+х)
54х +6х +0,5х² =252+21х
0,5х²+39х -252=0
D=b²-4ac=39²-4·0.5·-252=2025
Так как дискриминант больше нуля, то уравнение имеет два корня
Один отрицательный и не подходит ( -84)
Второй = 6
Скорость течения горной реки 6 км/ч
1+2+3+... - n чисел
воспользуемся арифметической прогрессией:
первый член: a1=1
разность: d=a2-a1=2-1=1
формула для суммы n членов арифметической прогрессии:
и эта сумма по условию: S=105
подставляем S, a1 и d в формулу, находим n:
n=14 => надо сложить 14 последовательных натуральных чисел, начиная с 1 чтобы получить 105
ответ: 14