1.Упростите выражение 2с^2/c^-1 = 2с^(2-(-1))= 2с^3
2. Разложите на многочлены 5x^2-4x-1
Решим уравнение 5x^2-4x-1 = 0 по общей формуле Д= 16-4*5*9-1)=36
х1= (4+6)/10=1
х2=(4-6)/10= -2/10=-0,2
5x^2-4x-1 =5(х-1)(х+0,2)=(х-1)(х+1)
3.Решите уравнение x-5/2=x
Приведём к общему знаменателю и получим х-5=2х
х-2х=5
-х=5
х=-5
4. Решите неравенство 9x-2(3x-4)>2
9х-6х+12>2
3х+12>2
3х>2-12
3х>-10
х>-10 : 3
х> 3 целых 1/3
промежуток (-3 1/3; + бесконечность)
5) Всего по плану 100 % стульев
Фирма изготовила 85%. Найдём сколько процентов осталось изготовить
1) 100%-85%=15% - осталось
2) 45 *100 : 15 = 300 ст - всего по плану
В решении.
Объяснение:
Решить уравнения:
1) х² - 10х - 24 = 0
D=b²-4ac = 100 + 96 = 196 √D=14;
х₁=(-b-√D)/2a
х₁=(10-14)/2
х₁= -4/2
х₁= -2;
х₂=(-b+√D)/2a
х₂=(10+14)/2
х₂=24/2
х₂=12;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
2) 3х² - 7х + 4 = 0
D=b²-4ac = 49 - 48 = 1 √D=1;
х₁=(-b-√D)/2a
х₁=(7-1)/6
х₁= 6/6
х₁= 1;
х₂=(-b+√D)/2a
х₂=(7+1)/6
х₂=8/6
х₂=4/3;
Проверка путём подстановки вычисленных значений х в уравнение показала, что данные решения удовлетворяют данному уравнению.
3) 9у² + 6у + 1 = 0
D=b²-4ac = 36 - 36 = 0 √D=0;
у=(-b±√D)/2a
у=(-6±0)/18
у = -6/18
у = -1/3.
Проверка путём подстановки вычисленного значения у в уравнение показала, что данное решение удовлетворяет данному уравнению.
4) 3р² + 2р + 1 = 0
D=b²-4ac = 4 - 12 = -8
D < 0;
Уравнение не имеет действительных корней.
По св-вам логарифмов 6^log6 468 = 468...