ответ: 7.
Объяснение:
Смотри первое приложение. Закрасим 7 клеток чтобы выполнялось условие (лев. квадрат 5х5). Докажем, что меньше семи клеток быть не может (прав. квадрат 5х5). Рассмотрим два квадрата 3х3 (красн. и син.). Чтобы количество закрашенных клеток было минимальным, необходимо закрасить все общие клетки этих квадратов (1 центральная). Видим, что для двух этих квадратов необходимо закрасить ещё по 3 клетки, чтобы всего было по 4. Тогда минимальное количество клеток 1+3+3=7, что и требовалось доказать. Во втором приложении я рассмотрел каждый квадрат 3х3, чтобы показать правильность расстановки.
2a+3=11
2a=8
a=4
3x-5y=7
3x=7+5y
x=7+5y /3
5y=3x-7
y=3x-7 /5