М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
moda712
moda712
25.12.2020 11:19 •  Алгебра

Построить график функции у=-2х-4 а) принадлежит ли графику точка в(-20,-70) б)указать с графика значение х, при котором у=6, у=0 ( с графиком и таблицей б)

👇
Ответ:
ghtrwsd18
ghtrwsd18
25.12.2020
y=-2x-4 \\ B(-20;-70) \\ -70= -2*(-20)-4 \\ -70 \neq 36 следовательно не принадежит.
Есть брать любые точки:

Построить график функции у=-2х-4 а) принадлежит ли графику точка в(-20,-70) б)указать с графика знач
Построить график функции у=-2х-4 а) принадлежит ли графику точка в(-20,-70) б)указать с графика знач
4,6(53 оценок)
Открыть все ответы
Ответ:
lakomkin2007
lakomkin2007
25.12.2020
Y = x^2 + 4x = 2 
Здесь Все под один знак равно:
y = x^2 + 4x - 2
Тогда графиком данной функции будет являться парабола!
Приравниваем к 0 правую часть функции:
x^2 + 4x - 2 = 0
Находим 2 точки параболы: m и n
m = -b дробная черта 2a. ; -4 дроб. черта 2 = -2
n = 4 -8 -2 = -6
Получились 2 точки: A (-2;0) и B (-6;0);
Далее находим центральную точку нашей параболы путем нахождения дискриминанта:
D = (b/2)^2 - ac.  ("/"-дробная черта) 
D = 4 - 1 (-2)
D = 6
Это примернооо 2,4 квадратный корень.
x1/2 = -b/2 +- корень из D и все разделить на a. 
x1/2 = -2 +- 2,4 /// 1 = / x1 = 0,4; x2 = -4.4
Дальше надо начертить систему координат, и расставить эти точки:
A (-2;0); B (-6;0); C (-4,4; 0,4);

Получится парабола!
4,7(70 оценок)
Ответ:
65893
65893
25.12.2020

1.

\lim_{x \to -5} \frac{x^2-25}{x+5}=(\frac{0}{0})= \lim_{x \to -5} \frac{(x-5)(x+5)}{x+5}= \lim_{x \to -5} (x-5)=-10

2.

\lim_{x \to \infty} \frac{3x^2-2}{2x^2+x}=(\frac{\infty}{\infty} )= \lim_{x \to \infty} \frac{3-\frac{2}{x^2} }{2+\frac{1}{x} }=\frac{3}{2}

3. нет. Но не понял задания: нужно графически или аналитически определить? в любом случае график функции думаю вы сами сможете нарисовать.

4

\lim_{x \to 0} \frac{sin(-4x)}{sin2x} = \lim_{x \to 0} \frac{-4x}{2x} -2

5

x^4-2x^3+2x-1=0\\(x^2-1)(x^2+1)-2x(x^2-1)=0\\(x^2-1)(x^2-2x+1)=0\\(x-1)(x+1)(x-1)^2=0\\x=\pm1\\

Объяснение:

Если не возникает неопределенностей (посмотрите, например, в и-нете "неопределенности пределов"), то для вычисления предела достаточно подставить вместо x, то к чему он стремится. Иначе, если появляются неопределенности, нужно их раскрыть(в этом все решение пределов). Есть множество методов решения различных неопределенностей (разложение на множители, деление числителя и знаметеля на высшую степень(только при x->∞), и т.д.).

для решения задания 4 был использован первый замечательный предел:

\lim_{x \to 0} \frac{sinx}{x} = 1

То есть в некоторых случаях можно сказать, что sinx ~ x, при x->0.

4,8(25 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ