Воспользуемся формулой P(x)/Q(x)<=0 <=> {P(x)•Q(x)<=0, Q(x) не равно 0. Или же сразу же приступим к четырём пунктам метода интервалов. 1. у=х-4х^2/x-1 2. D(y)=R, кроме х=1. 3 у=0, 1)x-4x^2/x-1=0; 2)x-4x^2=0<=>x(1-4x)=0 <=> [x=0, x=1/4; 3) x-1 не равно 0, х не равно 1. 4. Наносим нули функции на вектор + - + - 01/41
Определяем знаки интервалов, подставив любое значение икс на промежутке в первый пункт, имеем: Х€[0;1/4]U(1;+бесконечности) (1 мы выключили, но все значения, больше единицы нас удовлетворяют).
Чтобы определить координатные четверти, в которых находятся углы, нужно изобразить тригонометрический круг Угол 129° находится между углами 90° и 180° Значит, угол 129° находится во 2-ой четверти Аналогично с углом 235° Угол 235° находится в 3-й четверти, т.к. заключён между углами 180° и 270° Чтобы определить четверти отрицательных углов, идём в противоположном направлении от 0, т.е. по часовой стрелке, а не против Тогда угол -174° будет находиться между -90° и 180° Угол -174° находится в 3-й четверти Также угол -18° находится в 4-ой четверти Угол 900° на сумму углов 900°=360°+360°+180° Углы 360° уже не берём во внимание, угол 900° Угол 180° будет находиться во 2-ой четверти Значит, и угол 900° будет находиться в 3-й четверти