P(x) делится на Q(x), если существует многочлен R(x) такой, что P(x) = Q(x) * R(x). Если всё так, то по правилам дифференцирования P'(x) = Q'(x) R(x) + Q(x) R'(x).
P(x) делится на Q(x), если существует многочлен R(x) такой, что P(x) = Q(x) * R(x). Если всё так, то по правилам дифференцирования P'(x) = Q'(x) R(x) + Q(x) R'(x).
-1/x^2 + 2x =0
- 1 + 2x³ = 0
x ≠ 0
2x³ = 1
x³ = 1/2
x = ∛(1/2)