)) саша может выбрать обед из трех блюд суп плов рис котлеты из 5 напитков сок чай кофе лимонад компот сколько всего комбинаций из блюд может выбрать саша
|x-1|>|x+2|-3 |x-1|-|x+2|>-3 Раскроем модули. Приравняем каждое подмодульное выражение к нулю и найдем точки,в которых подмодульные выражения меняют знак: x-1=0 x+2=0 x=1 x=-2 Нанесем эти значения Х на числовую прямую:
(-2)(1)
Мы получили три промежутка.Найдем знаки каждого подмодульного выражения на каждом промежутке:
(-2)(1) x-1 - - + x+2 - + +
Раскроем модули на каждом промежутке: 1)x<-2 На этом промежутке оба подмодульных выражения отрицательны,поэтому раскрываем модули с противоположным знаком: -x+1+x+2>-3 3>-3 - неравенство верное при любых Х на промежутке x<-2
2) -2<=x<1 На этом промежутке первое подмодульное выражение отрицательное(его мы раскроем с противоположным знаком),а второе - положительное, и его мы раскроем с тем же знаком: -x+1-x-2>-3 -2x-1>-3 -2x>1-3 -2x>-2 x<1 С учетом промежутка -2<=x<1 получаем x e [-2;1)
3)x>=1 На этом промежутке оба подмодульных выражения положительные, поэтому раскрываем их без смены знака: x-1-x-2>-3 -3>-3 Неравенство не имеет решений на этом промежутке Соединим решения 1 и 2 промежутков и получим такой ответ: x e(-беск.,1)
1) выбрать двух человек с учетом их порядка пусть в классе х чел т.к. 2 чел из х чел, то это х*(х-1) = 756 х^2 -х -756 =0 Д=1+4*756 =3025 х=-27 не удовлетворяет усл задачи х2=28 ответ: 28 чел 2)" х" всего было туристов тогда C(4;x) = x! / (x-4)!*4! число выбора 4 дежурных C(2;x) = x! / (x-2)! * 2! число выбора 2 дежурных по условию задачи