М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dhkbzdyjnxx
dhkbzdyjnxx
07.06.2023 19:35 •  Алгебра

Представьте в виде произведения y в кубе-y в пятой степени со всеми объяснениями

👇
Ответ:
pupsik101010
pupsik101010
07.06.2023

y^3 - y^5=y^3*1-y^3* y^2=y^3 (1-y^2)=y^3 (1-y)(1+y)

 

используя вынос общего множителя и формулу разности квадратов

4,8(58 оценок)
Открыть все ответы
Ответ:
vladosik6448
vladosik6448
07.06.2023
У нас в итоге будет два числа: неизвестное (которое или которые станет/станут известным/и) и второе – разность изначально неизвестного и известного 533 \ 565 , которая должна выражать дату (в каком-то неизвестном представлении).

Обозначим второе число (дата), как x_5 x_4 x_3 \ x_2 x_1 x_o ,
тогда неизвестное число должно выглядеть, как: x_o x_1 x_2 \ x_3 x_4 x_5 ,
и должно выполняться равенство: x_o x_1 x_2 \ x_3 x_4 x_5 - 533 \ 565 = x_5 x_4 x_3 \ x_2 x_1 x_o ,
или, иначе говоря: x_5 x_4 x_3 \ x_2 x_1 x_o + 533 \ 565 = x_o x_1 x_2 \ x_3 x_4 x_5 ;

Запишем это в столбик:

. \ \ \ x_5 \ \ x_4 \ x_3 \ \ \ x_2 \ x_1 \ x_o \\ + \ \ 5 \ \ \ 3 \ \ \ 3 \ \ \ \ 5 \ \ \ 6 \ \ \ 5 \\ = \ x_o \ \ x_1 \ x_2 \ \ \ x_3 \ x_4 \ x_5

Все цифровые разряды будем, как это и принято, нумеровать от нуля до пяти, тогда номер разряда будет соответствовать индексу искомой цифры в разностном числе. Из столбика видно, что:

\left\{\begin{array}{l} x_2 + 5 + e_1 - 10 e_2 = x_3 \ , \\ x_3 + 3 + e_2 - 10 e_3 = x_2 \ ; \end{array}\right

где: e_1 – возможная добавочная единица, уходящая из первого
и приходящая во второй разряд: e_1 \in \{ 0 , 1 \} ,

e_2 – возможная добавочная единица, уходящая из второго
и приходящая в третий разряд: e_2 \in \{ 0 , 1 \} ,

e_3 – возможная добавочная единица,
уходящая из третьего разряда в четвёртый: e_3 \in \{ 0 , 1 \} ,

После сложения уравнений системы, получаем:

8 + e_1 - 9 e_2 - 10 e_3 = 0 ;

Это возможно, только если e_2 = e_1 = 1 и при e_3 = 0 ;

Отсюда следует, что: оба средних разряда при суммировании должны получать из предыдущего разряда добавочную единицу, причём второй разряд должен переполняться и иметь вычет десятки, а третий НЕ должен переполняться и не иметь вычета.

Тогда получим 6 возможных вариантов разностного числа:
x_5 x_4 0 \ 4 x_1 x_o , \\ x_5 x_4 1 \ 5 x_1 x_o , \\ x_5 x_4 2 \ 6 x_1 x_o , \\ x_5 x_4 3 \ 7 x_1 x_o , \\ x_5 x_4 4 \ 8 x_1 x_o , \\ x_5 x_4 5 \ 9 x_1 x_o .

Пятый разряд неизвестного числа должен быть больше пятого разряда разностного числа (верхней даты), а это значит, что нулевой разряд разного числа (верхней даты) должен быть больше неизвестного, стало быть, нулевой разряд при суммировании переполняется и даёт дополнительную единицу в первый разряд, а x_0 \geq 6 , поскольку x_5 \neq 0 , так как с этой цифры начинается разностное число.

Для того, чтобы второй разряд получал добавочную единицу, нужно чтобы первый разряд при суммировании переполнялся, что возможно только когда x_1 \geq 3 , поскольку в первом разряде уже есть шестёрка и добавочная единица, получаемая из нулевого разряда.

Значит, две последних цифры разностного числа (верхней даты) могут быть только годом, поскольку x_1 x_o \geq 36 .

Стало быть, дни месяца и месяц
расположены в разрядах: x_5 x_4 x_3 x_2 .

Тогда остаётся три варианта разностного числа: x_5 x_4 \ 04 \ x_1 x_o \ \ , \ \ x_5 x_4 \ 15 x_1 x_o \ \ , \ \ x_5 x_4 \ 26 \ x_1 x_o \ \ .

\left\{\begin{array}{l} x_5 = x_o + 5 - 10 = x_o - 5 \leq 4 \ , \\ x_4 = x_1 + 6 + 1 - 10 = x_1 - 3 \leq 6 \ ; \end{array}\right

отсюда:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

------------------

Рассмотрим первый вариант: x_5 x_4 \ 0 4 \ x_1 x_o ,
здесь 0 4 может играть роль апреля.

Сказано, что сумма всех цифр должна быть кратна трём, тогда:

x_5 + x_4 + x_3 + x_2 + x_1 + x_o = x_5 + x_4 + 0 + 4 + x_4 + 3 + x_5 + 5 = \\\\ = 2 ( x_5 + x_4 + 6 ) = 3 n \ ;

x_5 + x_4 = 3 m ;

Возможны только случаи:

1 + 2 = 3 m ;

1 + 5 = 3 m ;

2 + 1 = 3 m ;

2 + 4 = 3 m ;

3 + 0 = 3 m ;

Учитывая, что:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

получаем разностные числа:

120456 – дата 12/04/56 г.
150486 – дата 15/04/86 г.
210447 – дата 21/04/47 г.
240477 – дата 24/04/77 г.
300438 – дата 24/04/38 г.

------------------

Рассмотрим второй вариант: x_5 x_4 \ 1 5 \ x_1 x_o ,
здесь 15 может играть только роль числа месяца (дня).

Сказано, что сумма всех цифр должна быть кратна трём, тогда:

x_5 + x_4 + x_3 + x_2 + x_1 + x_o = x_5 + x_4 + 1 + 5 + x_4 + 3 + x_5 + 5 = \\\\ = 2 ( x_5 + x_4 + 7 ) = 3 n \ ;

x_5 + x_4 + 1 = 3 m ;

x_5 + x_4 = 3 m + 2 ;

Возможен только один случай:

1 + 1 = 3 m + 2 ;

Учитывая, что:

\left\{\begin{array}{l} x_o = x_5 + 5 \ , \\ x_1 = x_4 + 3 \ ; \end{array}\right

получаем разностное число:

111546 – дата 11/15/46 г.

продолжение >>>

Дорогие участники сайта знания.com. у меня появилась проблема с . условие: мы имеем неизвестное чи
Дорогие участники сайта знания.com. у меня появилась проблема с . условие: мы имеем неизвестное чи
4,8(94 оценок)
Ответ:
Прайм231
Прайм231
07.06.2023

Рассмотрим вертикальные линии и горизонтальные. Каждую из них диагональ пересекает ровно один раз. При этом каждое пересечение вертикальной или горизонтальной линии соответствует пересечению двух (соседних) клеток. Посчитаем сумму вертикальных (v) и горизонтальных клеток (h): каждая клетка, которую пересекают (кроме двух крайних), считается дважды (она дважды участвует в паре), но также каждое пересечение считается дважды. Поэтому \frac{2(v+h)+2}{2}=v+h+1 есть количество пересеченных клеток (мы добавили двойку в числителе вот почему: 2(v+h) - это удвоенное количество средних клеток (т.е. не крайних), а крайние посчитаны только один раз. Добавляя 2, мы считаем и крайние два раза. Теперь все клетки посчитаны дважды — можем делить на 2)

Пусть дан прямоугольник a\times b, причем числа a,b не имеют общих делителей (иначе какая-то клетка пересекалась бы по вершине — мы ее не считали). Тогда v=a-1, h=b-1. Получаем a-1+b-1+1=a+b-1 пересеченная клетка. Поскольку числа 239 и 566 не имеют общих делителей, к ним применима эта формула. Получаем, что диагональ пересекает 239+566-1=804 клетки

4,8(40 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ