Объяснение:
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 10
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=10
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=10
2n+1+2n+5=10
4n=4
n=1
1; 2и 3; 4
(2²-1²)+(4²-3²)=10
3+7=10 - верно
х+у = 19*2
х-у = 4
упростим верхнее:
х+у=38
х-у=4
сложим уравнения, получим:
2х = 42
х = 21
подставим в верхнее, найдем у:
21 + у = 38
у = 38 - 21
у = 17
ответ: 21 и 17