7, 3, 7, 0, 5, 8, 7, 4, 7, 17
Объяснение:
Натуральные числа - целые положительные числа, поэтому наименьшее натуральное число равен 1. По правилу счёта, количество целых чисел в замкнутом промежутке [A; B], где A и B целые числа определяется по формуле: B-A+1. Для решение задачи поступаем следующим образом:
1) если необходимо, для заданных промежутков определяем наибольшее подмножество в виде замкнутого промежутка, в котором содержаться двузначные натуральные числа;
2) посчитаем количество целых чисел, содержащихся в этом замкнутом промежутке.
[11; 17] ⇒ (17-11)+1=7
[0; 12] ⊃ [10; 12] ⇒ (12-10)+1=3
(-∞; 16] ⊃ [10; 16] ⇒ (16-10)+1=7
[0; 10) - нет таких чисел, 0
(-∞; 14) ⊃ [10; 14] ⇒ (14-10)+1=5
(92; +∞) ⊃ [92; 99] ⇒ (99-92)+1=8
[12; 19) ⊃ [12; 18] ⇒ (18-12)+1=7
(0; 13] ⊃ [10; 13] ⇒ (13-10)+1=4
(13; 20] ⊃ [14; 20] ⇒ (20-14)+1=7
(-∞; 26] ⊃ [10; 26] ⇒ (26-10)+1=17
7, 3, 7, 0, 5, 8, 7, 4, 7, 17
Найдем координаты точки D(x;y;z) исходя из формулы нахождения координат середины отрезка^
(xA+xC)/2=(xB+xD)/2;(yA+yC)/2=(yB+yD)/2;(zA+zC)/2=(zB+zD)/2
(3+3)/2=(1+х)/2⇒1+x=6⇒x=5
(4+7)/2=(2+y)/2⇒2+y=11⇒y=9
(-1-2)/2=(4+z)/2⇒4+z=-3⇒z=-7
D(5;9;-7)
Уравнение прямой ,проходящей через 2 точки
(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1)
Уравнение АВ
(x-3)/(1-3)=(y-4)/(2-4)=(z+1)/(4+1)
(x-3)/(-2)=(y-4)/(-2)=(z+1)/5
Уравнение ВС
(x-1)/(3-1)=(y-2)/(7-2)=(z-4)/(-2-4)
(x-1)/2=(y-2)/5=(z-4)/(-6)
Уравнение CD
(x-3)/(5-3)=(y-7)/(9-7)=(z+2)/(-7+2)
(x-3)/2=(y-7)/2=(z+2)/(-5)
Уравнение AD
(x-3)/(5-3)=(y-4)/(9-4)=(z+1)/(-7+1)
(x-3)/2=(y-4)/5=(z+1)/(-5)