Найдём d: (49-24)/(16-11) = 5 Найдём первый член: a(n)=a(1)+(n-1)d 24=a(1)+10•5 a(1)=-26 Проверяем возвожные ответы: 1) 1828=-26+(n-1)5 5n=1859 n=371,8 ; дробный член у прогрессии отсутствует, следовательно ответ 1 не верен 2) 506=-26+(n-1)5 5n=537 n=107,4 ; что также невозможно 3) 4389=-26(n-1)5 5n=4420 n=884, верный ответ! ОТВЕТ: 3)4389, это 884 член прогрессии
Первая м.—напечатала 60 стр.; x+2 стр. за 1 час; потратила на 1 час меньше времени чем вторая м. Вторая м.—напечатала 60 стр.; x стр за 1 час; потратила на 1 час больше времени чем первая. 60/x- время второй. 60/x+2- время первой. Составляем уравнение: 60/x-1=60/x+2 60/x-1-60/x+2=0 ( общий знаменатель- x*(x+2)) Знаменатели x, x+2 сокращаются. Получается: 60*(x+2)-1*x(x+2)-60*x=0 60x+120-x^2-2x-60x=0 -1x^2-2x+120=0 D=(-2)^2-4*(-1)*120=4+480=484 x1=-(-2)+√484/2*(-1)=2+22/-2=24/-2=-12 ( x1)(отрицательное число не может быть ответом) x2=-(-2)-√484/2*(-1)=2-22/-2=-20/-2=10 ( x2) За 1 час первая м. печатала x+2 стр. Следовательно, 10+2=12 (стр.)
Первая м.—напечатала 60 стр.; x+2 стр. за 1 час; потратила на 1 час меньше времени чем вторая м. Вторая м.—напечатала 60 стр.; x стр за 1 час; потратила на 1 час больше времени чем первая. 60/x- время второй. 60/x+2- время первой. Составляем уравнение: 60/x-1=60/x+2 60/x-1-60/x+2=0 ( общий знаменатель- x*(x+2)) Знаменатели x, x+2 сокращаются. Получается: 60*(x+2)-1*x(x+2)-60*x=0 60x+120-x^2-2x-60x=0 -1x^2-2x+120=0 D=(-2)^2-4*(-1)*120=4+480=484 x1=-(-2)+√484/2*(-1)=2+22/-2=24/-2=-12 ( x1)(отрицательное число не может быть ответом) x2=-(-2)-√484/2*(-1)=2-22/-2=-20/-2=10 ( x2) За 1 час первая м. печатала x+2 стр. Следовательно, 10+2=12 (стр.)
Найдём первый член: a(n)=a(1)+(n-1)d
24=a(1)+10•5
a(1)=-26
Проверяем возвожные ответы:
1) 1828=-26+(n-1)5
5n=1859
n=371,8 ; дробный член у прогрессии отсутствует, следовательно ответ 1 не верен
2) 506=-26+(n-1)5
5n=537
n=107,4 ; что также невозможно
3) 4389=-26(n-1)5
5n=4420
n=884, верный ответ!
ОТВЕТ: 3)4389, это 884 член прогрессии