М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Саби51
Саби51
06.03.2022 09:12 •  Алгебра

1вариант, 2 номер
где начинается а) 3а/а+4

👇
Открыть все ответы
Ответ:
fivmif
fivmif
06.03.2022

Пусть х часов-время за которое 1 бригада могла бы выполнить некоторую работу.

Тогда у часов-время за которое 2  бригада могла бы выполнить некоторую работу.

Известно,что Две бригады, работая вместе, могут выполнить некоторую работу за 12 часов.Отсюда следует,х+у=12.

Зная,что Первая бригада, работая одна, могла бы выполнить эту работу на 10 часов быстрее, чем вторая,отсюда следует,у-х=10.

Составим и решим систему уравнений:

х+у=12,

                +

у-х=10;        

 

2у=22,

у=10.

Значит,10 часов потребовалось бы первой бригаде для выполнения этой работы.

ответ:10 часов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4,7(43 оценок)
Ответ:
ufkvkvkg
ufkvkvkg
06.03.2022

Пусть дано квадратное уравнение a•x²+b•x+c=0, a≠0. Теорема Виета доказывается для приведённых квадратных уравнений, то есть когда коэффициент a=1.  А другие уравнения приводятся к такому виду.

Теорема Виета. Числа x₁ и x₂ являются корнями квадратного уравнения x²+p•x+q=0 тогда и только тогда, когда пара (x₁; x₂) является решением системы:

\displaystyle \left \{ {{x_{1} +{x_{2} = -p} \atop {{x_{1} * {x_{2} =q}} \right.

Теорема Виета утверждает, что квадратное уравнение и система одновременно разрешимы или неразрешимы. Ещё, теорема Виета даёт подбора корней:

Корни уравнения являются делителями свободного члена q!  

Отсюда вывод: если корни уравнения целочисленные, то легко определить корни, если разложить свободный член q на множители.

Рассмотрим примеры.

Пример-1. Решить уравнение: x²–3•x+2=0.

Решение. По теореме Виета x₁ + x₂ = 3 и x₁ · x₂ = 2. Предполагая, что корни уравнения целочисленные рассмотрим разложение: 2 = 1•2 = (–1)•(–2). Но из x₁ + x₂  = 3 видно, что корнями уравнения будут x₁=1 и x₂=2.

Пример-2. Решить уравнение: x²–6•x+8=0.

Решение. По теореме Виета x₁ + x₂  = 6 и x₁ · x₂ = 8. Предполагая, что корни уравнения целочисленные рассмотрим разложение: 8 = 1•8 = 2•4 = (–1)•(–8) =  (–2)•(–4). Но из x₁ + x₂  = 6 видно, что корнями уравнения будут x₁=2 и x₂=4.

Пример-3. Решить уравнение: x²+4•x+4=0.

Решение. По теореме Виета x₁ + x₂  = –4 и x₁ · x₂ = 4. Предполагая, что корни уравнения целочисленные рассмотрим разложение: 4 = 1•4 = 2•2 = (–1)•(–4) =  (–2)•(–2). Но из x₁ + x₂  = –4 видно, что корнями уравнения будут x₁= –2 и x₂= –2.

Вот основная суть теоремы Виета.

4,5(18 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ