Все квадратные неравенства решаются с параболы. Для этого надо найти корни, поставить их на числовой прямой и посмотреть знаки параболы. 1) (х + 2)( х - 4) > 0 x1 = -2 и х2 = 4 -∞ + -2 - 4 + +∞ ответ: х∈(-∞; -2)∨(4; +∞) 2) 5х² +3х <0 x1 = 0, x2 = -0,6 -∞ + - 0, 6 - 0 + +∞ ответ: х∈(-∞; -0,6)∨(0; +∞) 3) х1= -1, х2 = -5/6, х = 2 -∞ - -1 + -5/6 - 2 + +∞ - + + + это знаки (х +1) - - + + это знаки (6х +5) - - - + это знаки (х - 2) Теперь поставим общий знак на числовой прямой и запишем ответ ответ: х∈(-1; -5/6)∨(2; +∞)
Пусть первая бригада выполняет n заказов в час. Время выполнения одного заказа первой бригадой составит 1/n часов Скорость работы второй бригады - m заказов в час, и время выполнения одного заказа 1/m часов Время выполнения одного заказа на 3 часа меньше 1/n = 1/m + 3 При совместной работе скорость выполнения составит n+m заказов в час А время выполнения одного 1/(n+m) = 2 часа
решаем совместно эти уравнения n = 1/(1/m+3) = 1/(1/m + 3m/m) = m/(1+3m) n+m = 1/2 m/(1+3m) + m = 1/2 m + m(1+3m) = 1/2(1+3m) 3m^2 + 2m = 1/2 + 3/2m 6m^2 + m -1 = 0 m = -1/2 - отрицательный корень не годится m = 1/3 заказа в час - а вот это годится И это ответ :)
ответ: 4.