Вопрос не очень понятен, но вот все, что произошло с прямоугольником: Стороны были равны n и 6n . После увеличения первой и уменьшения второй первая стала 3*n= 3n, и вторая 6:2n= 3n. то есть получился квадрат со стороной 3n Периметр был (n+6n)*2 =14n, стал 4*3n=12n
Площадь прямоугольника была n*6n =6n^2, а стала 3n*3n=9n^2, то есть площадь увеличилась в полтора раза
Если же вопрос стоит тоько о площажи, то изменеие ее можно посчитать как произведение изменений сторон, то есть S2 = S1*3/2 = 1.5 S1
Вопрос не очень понятен, но вот все, что произошло с прямоугольником: Стороны были равны n и 6n . После увеличения первой и уменьшения второй первая стала 3*n= 3n, и вторая 6:2n= 3n. то есть получился квадрат со стороной 3n Периметр был (n+6n)*2 =14n, стал 4*3n=12n
Площадь прямоугольника была n*6n =6n^2, а стала 3n*3n=9n^2, то есть площадь увеличилась в полтора раза
Если же вопрос стоит тоько о площажи, то изменеие ее можно посчитать как произведение изменений сторон, то есть S2 = S1*3/2 = 1.5 S1
√3*2Sinx/2Cosx/2 - Cos²x/2 + Sin²x/2 = Sin²x/2 + Cos²x/2,
2√3Sinx/2Cosx/2 - Cos²x/2 + Sin²x/2 - Sin²x/2 - Cos²x/2 = 0,
2√3Sinx/2Cosx/2 - 2Cos²x/2 = 0,
√3Sinx/2Cosx/2 - Cos²x/2 = 0
Cosx(√3Sinx - Cosx) = 0
Cosx = 0 или √3Sinx - Cosx = 0 |: Cosx
x = π/2 + πk , k ∈Z √3 tgx -1 = 0
x = 1/√3
x = π/6 + πn , n∈Z