(x-1)(x+5)>0 Находим точки, в которых неравенство равно нулю: x-1=0 x=1 x+5=0 x=-5 Наносим на прямую (-∞;+∞) эти точки: -∞-51+∞ Получаем три диапазона: (-∞;-5) (-5;1) (1;+∞) Для того, чтобы определить знак диапазона достаточно подставить хотя бы одно число из этого диапазона: (-∞;-5) Например, подставим число -7: (-7-1)(-7+5)=-8*(-2)=16>0 ⇒ + (-5;1) Подставим число этого диапазона 0: (0-1)(0+5)=-1*5=-5<0 ⇒ - (1;+∞) Подставим 2: (2-1)(2+5)=1*7=7>0 ⇒ + -∞+-5-1++∞ ⇒ x∈(-∞;-5)U(1;+∞).
Уравнение имеет один корень, если дискриминант равен нулю.
(b+5)x^2+(2b+10)x+4=0
D = b² - 4ac
D = (2b +10)² - 4*(b + 5)*4 = 4b² + 40b + 100 - 16b - 80 = 4b² + 24b + 20
4b² + 24b + 20 = 0
b² + 6b + 5 = 0
b₁ = - 5
b₂ = - 1