Если я правильно понял задание то:
Составим векторы c1 и c2 для этого вместо а и b подставим значения координат векторов приведенных в задании и руководствуясь правилами умножения и сложения векторов получим
Получаем Необходимым и достаточным условие коллинеарности двух векторов является равенство нулю их векторного произведения
векторное произведение [a,b] для произвольных векторов а=(а1,а2,а3) и b=(b1,b2,b3) вычисляется по формуле
[a,b]={a2*b3-a3*b2; a3*b1-a1*b3; a1*b2-b1*a2}
Вычисляя по этой формуле векторное произведение c1 и с2 получаем:
[c1,c2]={-169; 39; -572} он не равен нулевому вектору, значит вектора не коллинеарны Векторы будут коллинеарны тогда и только тогда, когда существует такая константа m, что с1=m*c2
чтобы выяснить ее существование рассмотрим соотношение соответсвующих координат векторов c1 и с2
Получаем что:
Значит такой константы m не существуют, векторы не коллинеарны
Первый проще взять по частям, нафиг тут подстановка.
u = x du = dx;
dv = cos³xdx v = ∫cos²x d(sinx) = ∫1-sin²xd(sinx) = sinx - sin³x/3;
∫ = uv - ∫vdu = x[sinx - sin³x/3] - ∫sinx - sin³x/3 dx.
Вычисляем второй интеграл.
∫sinx dx = -cosx;
∫sin³x/3 dx = -(1/3)∫sin²x d(cosx) = -(1/3)∫1-cos²xd(cosx) = -(1/3) [cosx - cos³x/3]
Все, дальше думай головой :))
А второй - да, проще подставить. lnx = t x=e^t; dx = e^tdt
∫t*e^tdt - а теперь по частям по той же схеме. Получится x*lnx - x
Константы везде выкинул, но не забывай о них ))