Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
Пусть х - искомое число, тогда
(100-х) - первое вновь полученное число
(30+х) - третье вновь полученное число.
По условию произведение вновь полученных чисел равно квадрату второго числа, получаем уравнение:
(100-х)·(30+х) = 60²
3000-30х+100х-х² = 3600
-х²+70х-600 = 0
Делим обе части уравнения на (-1)
х²-70х+600 = 0
D = 4900-4·1·600=4900-2400= 2500 = 50²
x₁ = 10
x₂ = 60
1) Проверим х₁=10.
(100-10)·(30+10) = 60²
90 · 40 = 3600
3600 = 3600 верное равенство
2) Проверим x₂=60.
(100-60)·(30+60) = 60²
40 · 90 = 3600
3600 = 3600 верное равенство
ответ: 10; 60