На данном уроке мы рассмотрим методы решения системы линейных уравнений. В курсе высшей математики системы линейных уравнений требуется решать как в виде отдельных заданий, например, «Решить систему по формулам Крамера», так и в ходе решения остальных задач. С системами линейных уравнений приходится иметь дело практически во всех разделах высшей математики.
Сначала немного теории. Что в данном случае обозначает математическое слово «линейных»? Это значит, что в уравнения системы все переменные входят в первой степени: без всяких причудливых вещей вроде и т.п., от которых в восторге бывают только участники математических олимпиад.
В высшей математике для обозначения переменных используются не только знакомые с детства буквы .
Довольно популярный вариант – переменные с индексами: .
Либо начальные буквы латинского алфавита, маленькие и большие:
Не так уж редко можно встретить греческие буквы: – известные многим «альфа, бета, гамма». А также набор с индексами, скажем, с буквой «мю»:
Использование того или иного набора букв зависит от раздела высшей математики, в котором мы сталкиваемся с системой линейных уравнений. Так, например, в системах линейных уравнений, встречающихся при решении интегралов, дифференциальных уравнений традиционно принято использовать обозначения
Но как бы ни обозначались переменные, принципы, методы и решения системы линейных уравнений от этого не меняются. Таким образом, если Вам встретится что-нибудь страшное типа , не спешите в страхе закрывать задачник, в конце-концов, вместо можно нарисовать солнце, вместо – птичку, а вместо – рожицу (преподавателя). И, как ни смешно, систему линейных уравнений с данными обозначениями тоже можно решить.
Что-то у меня есть такое предчувствие, что статья получится довольно длинной, поэтому небольшое оглавление. Итак, последовательный «разбор полётов» будет таким::
подстановки.
{3x - y = 7 ⇒ у = 3х - 7
{2x + 3y = 1
2х + 3(3х - 7) = 1
2х + 9х - 21 = 1
11х = 1 + 21
11х = 22
х = 22 : 11
х = 2
у = 3 * 2 - 7 = 6 - 7
у = - 1
ответ : ( 2 ; - 1) .
сложения.
{3x - y = 7 | * 3
{2x + 3y = 1
{9x - 3y = 21
{2x + 3y = 1
(9x - 3y) + (2x + 3y) = 21 + 1
(9x + 2x) + ( - 3y + 3y) = 22
11x = 22
x = 22 : 11
х = 2
3 * 2 - у = 7
6 - у = 7
-у = 7 - 6
-у = 1
у = - 1
ответ : ( 2 ; - 1) .