Пусть мы имеем неравенство с двумя переменными одного из следующих видов:y > f(x); y ≥ f(x); y < f(x); y ≤ f(x).Для изображения множества решений такого неравенства на координатной плоскости поступают следующим образом:1. Строим график функции y = f(x), который разбивает плоскость на две области.2. Выбираем любую из полученных областей и рассматриваем в ней произвольную точку. Проверяем выполнимость исходного неравенства для этой точки. Если в результате проверки получается верное числовое неравенство, то заключаем, что исходное неравенство выполняется во всей области, которой принадлежит выбранная точка. Таким образом, множеством решений неравенства – область, которой принадлежит выбранная точка. Если в результате проверки получается неверное числовое неравенство, то множеством решений неравенства будет вторая область, которой выбранная точка не принадлежит.3. Если неравенство строгое, то границы области, то есть точки графика функции y = f(x), не включают в множество решений и границу изображают пунктиром. Если неравенство нестрогое, то границы области, то есть точки графика функции y = f(x), включают в множество решений данного неравенства и границу в таком случае изображают сплошной линией. ну вообще это основное, а там уже смотри по заданию как))
Задачу можно решать несколькими Проще с арифметической прогрессии.Первый(а₁=1)играет с остальными (n-1) партий,например,если участников 5,то первый играет с другими 4 партии.Если исходить из прогрессии,то каждый последующий,учитывая уже сыгранные партии,будет играть на одну партию меньше(d=1).Например,5 участников,первый играет 4 партии,второй,учитывая,что сыграл с первым,сыграет 3 партии.Третий,учитывая,что сыграл с двумя первыми,сыграет 2 партии и т.д. Sn=(2a₁+d(n-1))/2 · n; 45=(2·1+1·(n-1))/2 · n; 90=(2+n-1)·n; n²+n-90=0; D=361; n₁=-10-не соответствует,кол-во участников не может быть отрицательным; n₂=9.ответ: 9