0,5+m
Объяснение:
Для того, чтобы найти требуемое значение логарифма log49(28), которого обозначим через L, воспользуемся следующей формулой loga(b / с) = logab / logaс (где а > 0, a ≠ 1, b > 0, c > 0), которая называется формулой перехода к новому основанию.
В нашем примере новым основанием будет число 7, так как дано log7(2) = m. Итак, имеем L = log7(28) / log7(49). Поскольку 28 = 7 * 22 и 49 = 72, то используя следующие формулы, преобразуем полученное выражение: loga(b * с) = logab + logaс (где а > 0, a ≠ 1, b > 0, c > 0) и logabn = n * logab (где а > 0, a ≠ 1, b > 0, n – любое число). Получим: L = log7(7 * 22) / log7(72) = (log7(7) + log7(22)) / log7(72) = (log7(7) + 2 * log7(2)) / (2 * log7(7)).
Очевидно, что log7(7) = 1. Тогда, имеем: L = (1 + 2 * m) / (2 * 1) = 1 : 2 + 2 * m : 2 = 0,5 + m.
В решении.
Объяснение:
1) Ложь. Знак минус перед х² показывает - ветви вниз.
2) Истина. Уравнение имеет 2 корня, значит, парабола имеет две точки пересечения с осью Ох.
3) Ложь. Нет минуса перед х².
4) Истина. Знак минус перед х² показывает - ветви вниз.
5) Ложь. Уравнение имеет 2 корня, значит, парабола имеет две точки пересечения с осью Ох.
6) Истина. Уравнение не имеет решения, значит, нет точек пересечения параболы с осью Ох.
7) Истина. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
8) Ложь. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
Координаты вершины параболы (2; 0).
9) Истина. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
10) Ложь. Сначала найти x₀ по формуле x₀ = -b/2a, потом подставить значение x₀ в уравнение и вычислить у₀.
Координаты вершины параболы (-3; 0).
2(36+7y)-y=7
72+14y-y=7
13y=7-72
13y=-65
y=-65:13
y=-5
x=36+7*(-5)=36-35=1
1+(-5)=1-5=-4