Нет точки максимума
Объяснение:
Рассмотрим функцию
Так как в составе функции участвует квадратный корень, то область определений функции: x≥0, то есть D(y)=[0; +∞).
Чтобы найти экстремумы (локальные минимумы и максимумы) будем исследовать функцию с производной функции. Вычислим производную функции:
Так как , то
для любого x∈D(y). Это означает, что данная функция монотонно возрастает в D(y). Отсюда следует, что у функции нет точки максимума.
Так как функция монотонно возрастает в D(y), то минимальное значение в D(y)=[0; +∞) принимает при x=0: y(0)=2.
3(х-2) =х+2
3х-6=х+2
3х-х=6+2
2х=8
Х=4
2(х-1) =4-х
2х-2=4-х
2х+х=4+2
3х=6
Х=2