Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим
4n+3<100
4n<97
n<24,25
Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа
4n+3≥10
4n≥7
n≥1,75
номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии
а₂=4*2+3=11
а₂₄=4*24+3=99
Сумма n последовательных членов арифметической прогрессии начиная с члена :
Sn=(а₁+аn)*n/2
т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим
S₂₃=(11+99)*23/2=1265
Удачи!
Арифм, прогрессия. Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
т.е. число можно представить в виде аn=4n+3. Найдем последний двузначный член прогрессии, т.к. наименьшее трехзначное число равно 100, получим
4n+3<100
4n<97
n<24,25
Т.к. n – целое натуральное число, следовательно, согласно неравенству n<24,25, последний двузначный член имеет номер 24, найдем номер первого двузначного числа
4n+3≥10
4n≥7
n≥1,75
номер первого двузначного числа, , согласно неравенству n≥1,75, первый двузначный член имеет номер 2, найдем необходимые члены прогрессии
а₂=4*2+3=11
а₂₄=4*24+3=99
Сумма n последовательных членов арифметической прогрессии начиная с члена :
Sn=(а₁+аn)*n/2
т.к. надо найти сумму со 2 по 24 член, рассмотрим их как последовательность с 1 по 23 члены, получим
S₂₃=(11+99)*23/2=1265
Удачи!
решим как квадратное уравнение относительно у
у1,2= (7х+-∨(49х^2-40x^2)/2=(7x+-3x)/2
y1=5x , y2=2x
у=5х и у=2х это две прямые проходящие через начало координат
их можно построить по точкам
х=0 у=0 и х=1 у=5
х=0 у=0 и х=1 у=2