Если прямая проходит через точку, то её координаты удовлетворяют уравнению прямой.
Другими словами, если подставить координаты точки, через которую проходит прямая, в уравнение прямой, мы получим верное равенство.
2х-у=4
А (0; 4)
х=0, у=4
2*0-4 = -4
-4 ≠ 4
Равенство неверное.
Вывод: прямая 2х-у=4 не проходит через точку А (0; 4).
В (2; 0)
х=2, у=0
2*2-0 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку В (2; 0).
С (-3; -10)
х= -3, у= -10
2*(-3)-(-10) = -6+10 = 4
4=4 (равенство верно)
Вывод: прямая 2х-у=4 не проходит через точку С (-3; -10).
ответ: прямая проходит через точки В и С.
Итак, имеем две функции у= 4/х и у= х
Для каждой из них чертим табличку
у=х прямая, проходящая через точку (0;0), значит нужна еще одна точка, например, (2;2)
у=4/х - гипербола, нужно неск точек как положительных так и отрицательных но не х=0
х= 0,5 1 2 4 8 -0,5 -1 -2 -4 -8
у= 8 4 2 1 0,5 -8 -4 -2 -1 -0,5
Теперь по точкам строим два графика ( график второй функции состоит из двух частей) и смотрим точки пересечения графиков. Эти точки и пишем в ответ.
ответ: (2;2) и (-2;-2)
Подробнее - на -
Объяснение:
ВОТ ТАК
При делении степеней с одинаковыми основаниями от большей степени отнимается меньшая и ставится знак большей степени( основание не меняется)