Задание № 3:
Два пешехода должны выйти навстречу друг другу из двух пунктов, расстояние между которыми 20 км. Если первый выйдет на полчаса раньше второго, то он встретит второго пешехода через 2,5 ч после своего выхода. Если второй выйдет на 1 ч раньше первого, то он встретит первого пешехода через 2 ч 40 мин после своего выхода. Какова скорость первого пешехода (в км/ч)?
пусть х скорость первого (ее надо найти), у скорость второго
имеем систему
2.5x+2y=20 // так как первый шел 2,5 часа и вышел на полчаса раньше, то второй шел 2 часа
5x/3+8y/3=20 // так как второй шел 2 ч 40 мин и вышел на часраньше, то первый шел 1 ч 40 мин
5x+4y=40
5x+8y=60
4y=20
y=5
2.5x+2*5=20
2.5x=10
x=4
ответ: 4
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-1)^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-(-1))/(2*1)=(5-(-1))/2=(5+1)/2=6/2=3;x_2=(-√25-(-1))/(2*1)=(-5-(-1))/2=(-5+1)/2=-4/2=-2.
Выражение: x^2+3*x-4=(x-1)(x+4)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=3^2-4*1*(-4)=9-4*(-4)=9-(-4*4)=9-(-16)=9+16=25;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-3)/(2*1)=(5-3)/2=2/2=1;x_2=(-√25-3)/(2*1)=(-5-3)/2=-8/2=-4.
Выражение: x^2-8*x+15=(x-5)(x-3)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-8)^2-4*1*15=64-4*15=64-60=4;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(=√4-(-8))/(2*1)=(2-(-8))/2=(2+8)/2=10/2=5;x_2=(-=√4-(-8))/(2*1)=(-2-(-8))/2=(-2+8)/2=6/2=3.
Выражение: x^2+8*x+12=(x+2)(x+6)
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=8^2-4*1*12=64-4*12=64-48=16;
Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√16-8)/(2*1)=(4-8)/2=-4/2=-2;x_2=(-√16-8)/(2*1)=(-4-8)/2=-12/2=-6.