5 см и 8 см - стороны прямоугольника
Объяснение:
Р = 2(а+в) = 26 см - периметр прямоугольника
S1 = а² см² - площадь первого квадрата
S2 = в² см² - площадь второго квадрата
Составляем систему уравнений:
2(а+в) = 26
а² + в² = 89
2(а+в) = 26
а+в = 13
а = 13 - в - подставим это значение а во второе уравнение
а² + в² = 89
(13-в)² + в² = 89
169 - 26в + в² + в² = 89
2в² - 26в +169 - 89 = 0
2в² - 26в + 80 = 0 - разделим все уравнение на 2
в² - 13в + 40 = 0
в² - 8в - 5в + 40 = 0
в(в-8) - 5(в-8) = 0
(в-5)(в-8) = 0
Если в=5 см, то а=8 см, или наоборот в=8, а=5
ответ: 5 см и 8 см - стороны прямоугольника
Объяснение:
Обозначим искомые числа через х и у.
В условии задачи сказано, что среднее арифметическое двух этих чисел равно 20, а их среднее геометрическое составляет 12, следовательно, можем записать следующее соотношение:
х + у = 40;
х * у = 144.
Решаем полученную систему уравнений.
Подставляя во второе уравнение значение у = 40 - х из первого уравнения, получаем:
х * (40 - х) = 144;
40х - х^2 = 144;
х^2 - 40x + 144 = 0;
x = 20 ± √(400 - 144) = 20 ± √256 = 20 ± 16;
х1 = 20 + 16 = 36;
х2 = 20 - 16 = 4.
Находим у:
у1 = 40 - х1 = 40 - 36 = 4;
у2 = 40 - х2 = 40 - 4 = 36.
ответ: искомые числа 4 и 36.
Координаты середины отрезка АВ:
(-3;1)
ответ: (-3;1)