4
x³ - 3x²y = y³ + 20
3xy² = 7
cкладываем и вспоминаем (a - b)³ = a³ - 3a²b + 3ab² - b³
x³ - 3x²y - y³ + 3x²y = 27
(x - y)³ = 3³
x - y = 3
(x - y)/3 = 1
6
lg(x² + y²) = 2
lg 2 + lg xy = lg 96
x > 0 значит и y > 0 так как xy > 0
lg ab = lg a + lg b
lg 2xy = lg 96
2xy = 96
x² + y² = 10²
складываем
x² + 2xy + y² = 196
(x + y)² = 196 = 16²
|x + y| = 16
x + y = 16
x + y = -16 нет так как x y > 0
4
делаем перевертыши
(x + y)/xy = 1/y + 1/x = 7/10
(y + z)/yz = 1/y + 1/z = 13/40
(x + z)/xz = 1/x + 1/z = 8/5
cкладываем
2(1/x + 1/y + 1/z) = 7/10 + 13/40 + 8/5
1/x + 1/y + 1/z = (7/10 + 13/40 + 16/10)/2
1/x + 13/40 = (23/10 + 13/40)/2
1/x = (92/40 + 13/40)/2 - 13/40
1/x = 92/80 - 13/80 = 79/80
x = 80/79
(x² - x + 1)⁴ - 6x²(x² - x +1)² + 5x⁴ = 0
(x² - x + 1)² = y
y² - 6x²y + 5x⁴ = 0
D = (6x²)² - 4*5x⁴ = 16x⁴
y₁₂ = (6x² +- 4x²)/2 = x² 5x²
1. y = x²
(x² - x + 1)² = x²
(x² - x + 1)² - x² = 0
(x² - x + 1 - x)(x² - x + 1 + x) = 0
(x - 1)²(x² + 1) = 0
x = 1
x² + 1 = 0 нет действительных решений
2. y = 5x²
(x² - x + 1)² = 5x²
(x² - x + 1)² - 5x² = 0
(x² - x + 1 - √5x)(x² - x + 1 + √5x) = 0
x² - x + 1 - √5x = 0
x² - x(1 + √5) + 1 = 0
D = (1 + √5)² - 4 = 2 + 2√5
x₁₂ = (1 +√5 +- √(2 + 2√5))/2
x² - x + 1 + √5x = 0
x² - x(1 - √5) + 1 = 0
D = (1 - √5)² - 4 = 2 - 2√5 < 0 нет действительных решений
ответ 1, (1 +√5 ± √(2 + 2√5))/2