Дано: Доказать, что — прямая пропорциональность. ---------- От нас требуется доказать, что — прямая пропорциональность, то есть доказать, что в выражении находится в первой степени (не , не , не и не , а просто ). Рассмотрим данное выражение . Если внимательно посмотреть это выражение можно видоизменить по формулам сокращенного умножения, а именно по формуле «разность квадратов». Действительно, данное выражение имеет вид , где , и . Формула «разность квадратов» раскрывается так: . Раскроем наше выражение по формуле: Упростим: . Итак, получается, что , находится в первой степени, а значит зависимость — есть прямая пропорциональность. Доказано.
1) 10a + b = 10b + a + 36 9a = 9b + 36 a = b + 4 Остаток от деления равен 36, значит, делитель больше 36. Возможные значения b: b = 3; 4; 5 Соответствующие им значения а: a = 7; 8; 9 ответ: 7 + 8 + 9 = 24.
2) Если дробь правильная, то 10a+b < 10b+a; значит a < b. Так как b = 1; 2; 3; 4; то a = 1; 2; 3 12/21; 13/31; 23/32; 14/41; 24/42; 34/43 ответ: Всего 6 дробей
3) Начинаем с 1. Сначала прибавляем 3, получаем 4, потом умножаем на 3, получаем 12. Дальше опять прибавляем 3 и умножаем на 3. Следующее число будет 48*3 = 144.