М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vladgoncharov2p01aun
vladgoncharov2p01aun
27.04.2022 13:20 •  Алгебра

Найдите cos a если sin a = 0.8 и a является углом второй четверти

👇
Ответ:
dariadarina1
dariadarina1
27.04.2022
sina=0,8\; \; \; a\in (90^0;180^0)\\cosa=?\\\\cosa=Б \sqrt{1-sin^2a}=б \sqrt{1-0,8^2}=б \sqrt{1-0,64}=б\sqrt{0,36} =б0,6\\cosa\in (90^0;180^0) =\ \textgreater \ cosa\ \textless \ 0=\ \textgreater \ cosa=-0,6
4,6(1 оценок)
Ответ:
Soonthanyou
Soonthanyou
27.04.2022
Cosa = -V(1-sin^2a) (отрицательный)

cosa = -V(1-0,64) = -V0,36 = -0,6

ответ: -0,6
4,6(23 оценок)
Открыть все ответы
Ответ:
мозг1101
мозг1101
27.04.2022

{

x−y=1

x+y=9

⇔{

y=x−1

y=9−x

Графики линейных функций y = 9–x и y = x–1 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.

Для функции y = 9–x (зелёные точки):

1) x=0 ⇒ y= 9–0= 9 ⇒ (0; 9)

2) y=0 ⇒ 0= 9–x ⇒ x= 9 ⇒ (9; 0).

Для функции y = x–1 (синие точки):

1) x=0 ⇒ y= 0–1= –1 ⇒ (0; –1)

2) y=0 ⇒ 0= x–1 ⇒ x= 1 ⇒ (1; 0).

Построим графики функций в одной системе координат (см. рисунок 1). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):

(5; 4).

\tt \displaystyle \left \{ {{3 \cdot x+y=1} \atop {x+y=5}} \right. \Leftrightarrow \left \{ {{y=1-3 \cdot x} \atop {y=5-x}} \right.{

x+y=5

3⋅x+y=1

⇔{

y=5−x

y=1−3⋅x

Графики линейных функций y = 1–3•x и y = 5–x - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.

Для функции y = 1–3•x (синие точки и синие штрихи):

1) x=0 ⇒ y= 1–3•0 = 1 ⇒ (0; 1)

2) x=1 ⇒ y= 1–3•1 = –2 ⇒ (1; –2).

Для функции y = 5–x (зелёные точки):

1) x=0 ⇒ y= 5–0 = 5 ⇒ (0; 5)

2) y=0 ⇒ 0= 5–x ⇒ x= 5 ⇒ (5; 0).

Построим графики функций в одной системе координат (см. рисунок 2). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):

(–2; 7).

\tt \displaystyle \left \{ {{y-6 \cdot x=-25} \atop {y-x=-5}} \right. \Leftrightarrow \left \{ {{y=6 \cdot x-25} \atop {y=x-5}} \right.{

y−x=−5

y−6⋅x=−25

⇔{

y=x−5

y=6⋅x−25

Графики линейных функций y = 6•x–25 и y = x–5 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.

Для функции y = 6•x–25 (синие точки и синие штрихи):

1) x=2 ⇒ y= 6•2–25 = –13 ⇒ (2; –13)

2) x=3 ⇒ y= 6•3–25 = –7 ⇒ (3; –7).

Для функции y = x–5 (зелёные точки):

1) x=0 ⇒ y= 0–5 = –5 ⇒ (0; –5)

2) y=0 ⇒ 0= x–5 ⇒ x= 5 ⇒ (5; 0).

Построим графики функций в одной системе координат (см. рисунок 3). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):

(4; –1).

4,6(78 оценок)
Ответ:
мурgsng
мурgsng
27.04.2022

а) у²-10у+25=(у-5)²=(у-5)(у-5)

использовали формулу а²-2ас+с²=(а-с)²-по ней и свернули кв. трехчлен

б) по формуле разности квадратов а²-с²=(а-с)*(а+с)

9х²-49/144=(3х-(7/12))(3х+(7/12))

в)у²-5у+4=(у-1)(у-4), здесь для разложения нашли корни уравнения у²-5у+4=0, по Виету у=1; у=4.

г) х²-х-6=0, по Виету х=3, х=-2,  х²-х-6=(х-3)(х+2)

д) 2х²-7=2*(х²-3.5)=2*(х-√3.5)(х-√3.5) - применили разложение разности квадратов а²-с²=(а-с)*(а+с)

е)у²+7у-8=0 по Виету в общем виде ах²+bx+c=a*(x-x₁)(x-x₁)- это разложение кв. трехчлена на линейные множители при неотрицательном дискриминанте, где х₁, х₂- корни квадратного трехчлена  ах²+bx+c.

у=1, у=-8; у²+7у-8=(у-1)(у+8)

4,7(63 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ