1)] x (деталей/день) - изготовляла 1 бригада
х-8(деталей/день) - изготовляла 2 бригада.
y(дней) - время работы 1 бригады
y+1(дней) - время работы 2 бригады
Тогда:
y=240/x
y+1=240/(x-8)
240/x +1=240/(x-8)
240(x-8)+x(x-8)-240x=0
240x-1920+x^2-8x-240x=0
x^2-8x-1920=0
D=8^2+4*1920=64+7680=7744=88^2
x1=(8+88)/2=48
x2=(8-88)/2=-40 - не подходит
ответ: 48 и 40.
2)
Имеет смысл когда:
2(а+1,5)(а+4)>0 и -(a+5)(a-2)>0
a>-1,5 или a<-4 -5<a<2
-5<a<-4 и -1,5<a<2
ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn
2)(3a-2)(3a+2)взаимно уничтожаются и (а-8)(а+8) тоже остаётся 0