М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
никокотрик
никокотрик
26.12.2022 18:05 •  Алгебра

:6(p-q)(p+q)-6p^2+12q^2= решите уравнение: -4)(х+4)-х^2=2х; 2).х+2-х(х+2)=0.

👇
Ответ:
Grebeshe
Grebeshe
26.12.2022
Решение:
1) 
6(p-q)(p+q)-6p^2+12q^2=6p²-6g²-6p²+12g²=6g²
2)
(х-4)(х+4)-х^2=2х
x²-16-x²-2x=0
-2x=16
x=16/(-2)
x=-8
Проверка:
(-8-4)(-8+4)-(-8)²=2×(-8)
-12×(-4)-64=-16
-16=-16
ответ: x= -8
4,5(52 оценок)
Открыть все ответы
Ответ:
ramn
ramn
26.12.2022

По условию задачи, если к некоторому палиндрому (х+3) прибавить 2, то получится также палиндром (х+5). Найдем этот палиндром (х+3).

Заметим, что если при прибавлении к числу 2 не произошло перехода в старшие разряды, то получившееся число не будет палиндромом. Значит, последняя цифра числа (х+3) равна 8 или 9. Тогда, после прибавления к такому числу 2, его последняя цифра станет равной 0 или 1 соответственно. Но по смыслу палиндрома, эта же цифра должна являться и его первой цифрой. Единственный возможный вариант - произошел переход через все разряды вплоть до старшего в исходном числе.

Единственное число-палиндром, при прибавлении к которому 2 произойдет переход по всем разрядам - это число 9999. Заметим, что результат суммы 9999+2=10001 - палиндром.

Таким образом, число (х+3) найдено и равно 9999.

Значит, х=9996.

ответ: 9996

4,5(32 оценок)
Ответ:
Mariyzilia
Mariyzilia
26.12.2022
Для начала заметим, что в первом уравнении системы обе части строго положительны, поскольку степень положительного числа - всегда число положительное, что мы и видим. Значит, я могу прологарифмировать обе части данного равенства.
Со вторым равенством поступим аналогично. Почему же здесь обе части положительны? Это происходит вследствие того, что x и y всегда положительны(поскольку иначе быть не может из-за того, что они входят под знаком логарифма в первом равенстве). Значит, основания степеней положительны, а потому, и степени положительны. Поэтому имеем право прологарифмировать обе части. Сделаем это. При этом будем использовать свойства логарифмов.

\left \{ {{lg 5^{lg x} = lg 3^{lg y} } \atop {lg (3x)^{lg 3} = lg (5y)^{lg 5} }} \right. \\ \left \{ {{lg 5* lg x = lg 3 * lgy} \atop {lg3 * lg(3x) = lg5 * lg(5y)}} \right.
Напомню, что в процессе мы использовали то, что степень выражения под логарифмом я могу спустить и сделать его множителем.

Теперь введём замену переменных. Пусть lg (3x) = u, lg(5y) = v. Выразим сами логарифмы lg x и lg y через эти переменные. Для этого используем правило логарифма произведения:
lg(3x) = lg3 + lg x, откуда lg x = lg(3x) - lg3 = u - lg3
Аналогично,
lg(5y) = lg5 + lg y, откуда lg y = lg(5y) - lg 5 = v - lg5
Теперь подставляем это в нашу систему:

\left \{ {{lg5*(u - lg3) = lg3*(v - lg5)} \atop {lg3 * u = lg5 * v}} \right.
Теперь решаем эту систему. Она заметно проще предыдущей. Как решаем? Обычным путём выражения одной переменной через другую. Допустим, выразим u через v из второго уравнения и подставим в первое.
u = \frac{v * lg5}{lg3}

Далее производим подстановочку в первое уравнение, которое упрощаем обычными средствами:
lg 5 * ( \frac{vlg5}{lg3} - lg3) = lg3 * (v - lg5) \\ lg5 * \frac{vlg5 - lg^{2}3 }{lg3} = vlg3 - lg3 * lg5 \\ lg5 * (vlg5 - lg^{2}3) = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v lg^{2} 5 - lg^{2}3 * lg5 = v lg^{2} 3 - lg^{2} 3 * lg5 \\ v( lg^{2} 5 - lg^{2} 3) = 0 \\ v = 0

Сразу находим, что и u = 0.
Далее возвращаемся к обычным переменным:
lg(3x) = 0, откуда 3x = 1, x = 1/3 и
lg(5y) = 0, откуда 5y = 1, y = 1/5

Таким образом, решением системы является пара ( \frac{1}{3} , \frac{1}{5} )
4,7(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ