Модуль не может быть отрицательным числом... следовательно, x ≥ 3 теперь нужно раскрыть модуль по определению: для y ≥ 2 y-2 = x-3 ---> y = x - 1 для y < 2 y-2 = -x+3 ---> y = -x + 5
Чтобы понять решение линейных неравенств, рассмотрим пример:
Как видно из решения, мы используем уже известные нам с 5ого класса навыки переноса x в левую часть. Это неравенство отличается от линейного уравнения только знаком >. Стоит также отметить, что ответ на решение записывается в неравенствах в виде промежутка. В нашем случае так: x∈(2; +∞). Круглая скобка показывает, что точка не включена в промежуток.
Рассмотрим другой пример:
Как видно из решентя, мы меняем знак неравенства на противоположный при домножении обоих его частей на отрицательное число. ответ к неравенству запишем так: x∈[-1; +∞).
Чтобы закрепить материал попробуйте решить два неравенства, а потом сверить ответы:
ответ: x∈[-2 4/9; +∞).
ответ: x∈(1 1003/4925; +∞).
Система неравенств решается так:
Т. е. сначала решаем два неравенста как будто системы нет.
Теперь ищем общую часть. Она и будет являться ответом. У нас это: x∈(4, 7).
Чтобы понять решение линейных неравенств, рассмотрим пример:
Как видно из решения, мы используем уже известные нам с 5ого класса навыки переноса x в левую часть. Это неравенство отличается от линейного уравнения только знаком >. Стоит также отметить, что ответ на решение записывается в неравенствах в виде промежутка. В нашем случае так: x∈(2; +∞). Круглая скобка показывает, что точка не включена в промежуток.
Рассмотрим другой пример:
Как видно из решентя, мы меняем знак неравенства на противоположный при домножении обоих его частей на отрицательное число. ответ к неравенству запишем так: x∈[-1; +∞).
Чтобы закрепить материал попробуйте решить два неравенства, а потом сверить ответы:
ответ: x∈[-2 4/9; +∞).
ответ: x∈(1 1003/4925; +∞).
Система неравенств решается так:
Т. е. сначала решаем два неравенста как будто системы нет.
Теперь ищем общую часть. Она и будет являться ответом. У нас это: x∈(4, 7).
следовательно, x ≥ 3
теперь нужно раскрыть модуль по определению:
для y ≥ 2
y-2 = x-3 ---> y = x - 1
для y < 2
y-2 = -x+3 ---> y = -x + 5