Уравнения вида приводится уравнение четвёртой степени, у которых отсувствует третьей степени., поэтому нужно сделать замену переменных, тоесть , где - коэффициент перед х^3 и 4 - произвольные вещественные числа
В нашем случае такое уравнение: Заменим , получаем
Получаем кубическое уравнение: В нашем случае: Подставляем и получаем уравнение
Разложим одночлены в сумму нескольких
Выносим общий множитель
Уравнение 16s²+288s+3343=0 решений не имеет, так как D<0
Таким образом для решения уравнения остается квадратное уравнение
5. график функции y=(x+3)² можно получить из графика функции y=x² сдвигом параболы y = x² влево на 3 единицы (вдоль оси ОХ)
6. наибольшее значение функции у=-x³+6x-10 График кубической функции бесконечен по обеим осям координат, поэтому наибольшее значение функции определить невозможно.
4х-1,5=-10+4х
х∈∅
Прямые параллельны.
1.2(5-4х)= -6(0.8х+1)
6-4,8х=-,4,8х-6
х∈∅
Прямые параллельны.