1)при каком значение параметра а, система имеет б/много решений. ах+у=1 4х-2у=а 2) и при каком значение параметра а, система имеет ед. решение ах+2у=3 8х+ау= а+2
При a = -2 уравнение всегда равно нулю, то есть верно. Поэтому при а = -2 имеется бесконечное количество решений.
2) Делаем тоже, что и в первом:
y = (3-ax)/2
8x+ a(3-ax)/2 = a+2
8x + (3a - a^2 * x)/2 = a+2 | * 2
16x + 3a - a^2 * x = 2a + 4
-a^2 * x + a + 16x - 4 = 0
x(16 - a^2) + (a-4) = 0
x(4-a)(4+a) - (4-a) = 0
(4-a)(x(4+a) - 1) = 0
(4-a)(4x + ax - 1) = 0 (1)
Для того, чтобы а давало одно решение системе, необходимо, во-первых, чтобы а не было равно 4(тогда повторится история первого примера, будет бесконечно корней), а во-вторых, при любом а, отличном от четырёх и от минус четырёх, у уравнения (1) всегда будет один корень, потому что а - это простое число, (4-а) - тоже, а 4х + ах - 1 превращается в обычное линейное уравнение, которое имеет только один корень. В случае, когда а = -4, то уравнение превращается вот во что: (4+4)(4х - 4х - 1) = 0
8*(-1) = 0 , что неверно.
Значит, значение параметра может быть любым числом, кроме 4 и -4. =)
Пусть х км в час - скорость одной группы, у км в час - скорость другой. По условию обе группы км за 2 часа, значит 2(х+у)=18. (18/х) час- время прохождения всего пути первой группой, (18/у) час -время прохождения всего пути первой группой, По условию Одно время на 54 мин. больше другого. Второе уравнение: (18/х)-(18/у)=54/60
Решаем систему двух уравнений {2(х+у)=18⇒ x+y=9 ⇒y=9-x {(18/х)-(18/у)=54/60
(18/x)-(18/(9-x))=9/10 x²-49x+180=0 D=49²-4·180=2401-720=1681=41² x=(49-41)/2=4 или х=(49+41)/2=45 45 > 9 и не удовлетворяет условию задачи 4 км в час и 9-4=5 км в час. О т в е т. 4 км в час и 5 км в час.
1) Выразим y из первого уравнения:
y = 1 - ax
Подставим y во второе уравнение:
4x - 2(1 - ax) = a
4x - 2 + 2ax = a
2(2x-1) + a(2x-1) = 0
(a+2)(2x-1) = 0
При a = -2 уравнение всегда равно нулю, то есть верно. Поэтому при а = -2 имеется бесконечное количество решений.
2) Делаем тоже, что и в первом:
y = (3-ax)/2
8x+ a(3-ax)/2 = a+2
8x + (3a - a^2 * x)/2 = a+2 | * 2
16x + 3a - a^2 * x = 2a + 4
-a^2 * x + a + 16x - 4 = 0
x(16 - a^2) + (a-4) = 0
x(4-a)(4+a) - (4-a) = 0
(4-a)(x(4+a) - 1) = 0
(4-a)(4x + ax - 1) = 0 (1)
Для того, чтобы а давало одно решение системе, необходимо, во-первых, чтобы а не было равно 4(тогда повторится история первого примера, будет бесконечно корней), а во-вторых, при любом а, отличном от четырёх и от минус четырёх, у уравнения (1) всегда будет один корень, потому что а - это простое число, (4-а) - тоже, а 4х + ах - 1 превращается в обычное линейное уравнение, которое имеет только один корень. В случае, когда а = -4, то уравнение превращается вот во что: (4+4)(4х - 4х - 1) = 0
8*(-1) = 0 , что неверно.
Значит, значение параметра может быть любым числом, кроме 4 и -4. =)