чтобы решить это уравнения надо построить в одной координатной плоскости графики функций y=sqrt(x) и y=6-x , абсцисса точки пересечения этих графиков и будет корнем этого уравнения
1) y=sqrt(x) - график этого уравнения - лежачая полупарабола, определенная только при значении x>=0
находим некоторые точки:
x=0; y=0; (0;0)
x=1; y=1; (1;1)
x=4; y=2; (4;2)
2) y=6-x - линейная функция, график - прямая линия
находим некоторые точки:
x=0; y=6 (0;6)
x=6; y=0; (6;0)
график в приложении:
красным цветом - график y=sqrt(x)
синим цветом - график y=6-x
эти функции пересекаются в точке (4;2)
откуда x=4
ответ: x=4
Объяснение:
BM = 12,5см
Объяснение:
Р (треугольника АВС) = АВ + ВС + СА = 42 см; также по условию задано, что АС = АМ + МС, потому как на стороне АС взята точка М; Р (треугольника АВМ) = АВ + ВМ + МА = 32 см; Р (треугольника ВМС) = ВС + СМ + МВ = 35 см; тогда Р (треугольника АВС) = Р (треугольника АВМ) - МВ + Р (треугольника ВМС) - МВ; Подставим заданные значения в уравнения периметра треугольника АВС, неизвестную сторону МВ обозначим через переменную х:
42 = 32 - х + 35 - х;
2х = 32 + 35 - 42;
2х = 67 - 42;
2х = 25;
х = 25 : 2;
х = 12,5 (см) - сторона ВМ.
ответ: ВМ = 12,5 см.
1) Первообразных для любой функции существует множество. Для данной функции общий вид первообразных будет: 4х - х^3/3 +С. Чтобы найти С, на воспользоваться условием, что график первообразной проходит через точку (-3; 10). Подставим в первообразную вместо х -3, а вместо у 10.
10 = 4·(-3) - (-3)^3/3 +С,
10 = -12 +9 +С,
С = 13