Собственная скорость лодки (т.е. в стоячей воде) vc = v км/ч скорость течения v т = 2 км/ч расстояние s = 3 км путь по течению: скорость v₁ = vc + vт = (v+2) км/ч время t₁ = s/v₁ = 3/(v+2) часов путь против течения: скорость v₂ = vc - vт = (v - 2) км/ч время t₂ = s/v₂ = 3/(v - 2) часов по условию t₂ - t₁ = 1 час ⇒ уравнение: 3/(v - 2) - 3/(v+2) = 1 | * (v-2)(v+2) v≠ 2 ; v≠ - 2 3(v+2) - 3(v - 2) = 1*(v-2)(v+2) 3v + 6 - 3v + 6 = v² - 2² 12 = v² - 4 v² - 4 - 12 = 0 v² - 16 = 0 v² - 4² = 0 (v - 4)(v + 4) = 0 произведение = 0, если один из множителей = 0 v - 4 = 0 v₁ = 4 (км/ч) собственная скорость лодки v + 4 = 0 v₂ = - 4 не удовлетворяет условию проверим: 3/(4 - 2) - 3/(4+2) = 3/2 - 3/6 = 1,5 - 0,5 = 1 (час) разница во времени ответ : 4 км/ч скорость лодки в стоячей воде.
по примеру реши.
x^3 - 6x^2 + 11x - 6 = 0 можно, конечно, решить формулой кардано для решения кубических уравнений, но это долго и трудно. проще подобрать корни схемой горнера. возможные рациональные корни x = a/b, где а - делитель свободного члена, b - делитель старшего коэффициента. x = 1, -1, 2, -2, 3, -3, 6, -6 находишь значения в этих точках. y(1) = 1 - 6 + 11 - 6 = 0 - повезло сразу! теперь раскладываем: x^3 - x^2 - 5x^2 + 5x + 6x - 6 = 0 (x - 1)(x^2 - 5x + 6) = 0 (x - 1)(x - 2)(x - 3) = 0 ответ: x1 = 1, x2 = 2, x3 = 3