М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
krubtsova79
krubtsova79
24.11.2022 07:15 •  Алгебра

170сos(arccos(4/5)-arcsin(8/17)) ! ответ: 168

👇
Ответ:
3aHo3a1538
3aHo3a1538
24.11.2022

170\cos(\arccos(4/5)-\arcsin(8/17))=


=170(\cos(\arccos(4/5))\cdot \cos(\arcsin(8/17))+ \sin(\arccos(4/5))\cdot \sin(\arcsin(8/17)))=


=170((4/5)\cdot \cos(\arccos(15/17)+\sin(\arcsin(3/5)\cdot (8/17))=


170\left(\frac{4}{5}\cdot \frac{15}{17}+\frac{3}{5}\cdot \frac{8}{17}\right)=168


Пояснения. Угол arccos(4/5) - это угол в прямоугольном треугольнике с катетом 4 и гипотенузой 5. Второй катет в этом треугольнике равен 3, поэтому arccos(4/5)=arcsin(3/5). Угол arcsin(8/17) - это угол в прямоугольном треугольнике с катетом 8 и гипотенузой 17. Второй катет, если мы не помним его наизусть, ищем по теореме Пифагора. Его квадрат равен 17 в квадрате минус 8 в квадрате, то есть (17-8)(17+8)=9 на 25, то есть 3 в квадрате на 5 в квадрате, то есть 15 в квадрате. Итак, второй катет равен 15, поэтому arcsin (8/17)=arccos (15/17).


ответ: 168

4,7(23 оценок)
Открыть все ответы
Ответ:
слышала
слышала
24.11.2022
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)
4,8(94 оценок)
Ответ:
ostapenkonatasha
ostapenkonatasha
24.11.2022
1) (16x^2 - 64x) - (9y^2 + 54y) - 161 = 0
16(x^2 - 4x + 4) - 64 - 9(y^2 + 6y + 9) + 81 = 161
16(x - 2)^2 - 9(y + 3)^2 = 16
(x - 2)^2 - (y + 3)^2 / (16/9) = 1
Это гипербола с центром A(2; -3) и полуосями a = 1; b = √(16/9) = 4/3

2) y = cos(x + y)
y' = -sin(x + y)*(1 + y') = -sin(x + y) - y'*sin(x + y)
y' + y'*sin(x + y) = -sin(x + y)
y' = - sin(x+y) / (1 + sin(x+y))

3) (1+x^2) dy - 2xy dx = 0
(1+x^2) dy = 2xy dx
dy/y = 2x dx / (1+x^2)
Интегрируем обе части
\int { \frac{dy}{y} }=ln|y|
\int { \frac{2xdx}{1+x^2} }=|1+x^2=t;dt=2xdx|=\int \frac{dt}{t} =ln|t|+C=ln|1+x^2|+lnC
ln |y| = ln |1+x^2| + ln C
y = C(1 + x^2)
Решаем задачу Коши.
y(-1) = C(1 + (-1)^2) = 2C = 4
C = 2
y = 2(1 + x^2)
4,8(67 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ