1) sin x = √2/2
x = (-1)ⁿ × arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × π/4 + πn, n∈Z
2) sin x = -√2/2
x = (-1)ⁿ × arcsin (-√2/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √2/2 + πn, n∈Z
x = (-1)ⁿ × (-π/4) + πn, n∈Z
3) sin x = -√3/2
x = (-1)ⁿ × arcsin (-√3/2) + πn, n∈Z
x = (-1)ⁿ × -arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × (-π/3) + πn, n∈Z
4) sin x = √3/2
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × arcsin √3/2 + πn, n∈Z
x = (-1)ⁿ × π/3 + πn, n∈Z
5) sin x = 4/5
x = (-1)ⁿ × arcsin 4/5 + πn, n∈Z
x = (-1)ⁿ × 0,927295 + πn, n∈Z
x = (-1)ⁿ × 53,1° + πn, n∈Z
30
Объяснение:
числовая дробь - отношение двух чисел A/B (A:B)
2, 19, 23, 9, 13, 11 - простые числа, кроме 9, но и у 9 нет общих делителей с остальными, отличных от 1, поэтому все числа попарно взаимно просты,
а значит составляя две дроби из четырех разных чисел мы не получим равных чисел(дробей), при этом по условию задачи мы не можем использовать числа вида 2/2 (когда числитель и знаменатель равны - состоят из одного числа)
для начала возьмем все дроби, в числителе или знаменателе, которых есть 2, таких будет 2*5 (2 в числителе или знаменателе, второе число одно из 5ти остальных)
теперь возьмем те где есть 19 и нет 2(с ней уже посчитали), будет 2*4
и т.д.
для предпоследнего числа(пятого) 2*1
ну и шестое уже везде посчитали (оно везде задействовано),
итого общее число составления возможных различных дробей равно
2*5+2*4+2*3+2*2+2*1=10+8+6+4+2=30