15
Объяснение:
x-скорость ветра
Летя за ветром, его скорость стала 45+х, а против 45-х. В обеих случаях он пролетел 120км и потратил на все это в сумме 6 часов. Ко времени, за которое он пролетел двигаясь по ветру, добавляем время за которое он пролетел, летя против ветра и получаем 6. Решаем уравнение отталкиваясь от формулы S/v=t:
120/(45+x) + 120/(45-x) = 6
((120(45-х)+120(45+х))/((45+x)(45-x))=6
(5400-120x+5400+120x)/(2025+45x-45x-x^2)=6
10800/(2025-x^2)=6
10800=6(2025-x^2)
10800=12150-6x^2
6x^2=12150-10800
6x^2=1350
x^2=225
x1=15
x2=-15
Скорость не может быть отрицательной, поэтому х=15
В решении.
Объяснение:
Применить формулы сокращённого умножения:
1)(5х+3у)²=25х²+30ху+9у²;
2)(4а-7в)²=16а²-56ав+49в²;
3)81х²-121у²=(9х-11у)(9х+11у);
4)(10х-3у)(10х+3у)=100х²-9у²;
5)(2х+3у)³=
6)(5х-4у)³=
7)27х³+1000у³=
8)64а³-343в³=
Вынести общий множитель за скобки:
1)3х+3у=3(х+у);
2)10х-15у=5(2х-3у);
3)4х(3х+2у)+5(3х+2у)=(3х+2у)(4х+5);
Разложить на множители многочлен:
1)ах+ау+5х+5у=(ах+ау)+(5х+5у)=а(х+у)+5(х+у)=(х+у)(а+5);
2)вх+в+10х+10=(вх+в)+(10х+10)=в(х+1)+10(х+1)=(х+1)(в+10);
3)4х-4у-7сх+7ус=(4х-4у)-(7сх-7ус)=4(х-у)-7с(х-у)=(х-у)(4-7с);
4)х²+хв-7х-7в=(х²-7х)+(хв-7в)=х(х-7)+в(х-7)=(х-7)(х+в);
5)х³-12+6х²-2х=(х³+6х²)-(12+2х)=х²(х+6)-2(х+6)=(х+6)(х²-2).
a) = 2x-3x+3y=-x+3y
b) = -4x+4x-10=-10
в)= 7x^2-3x^2+5=4x^2+5
г)= 5a^2-5a-2ab
в)= 2a^2-5a^2+5ab=-3a^2+5ab
г)=10x^2-10x^2+5x=5x