М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kiki52
kiki52
07.04.2020 01:08 •  Алгебра

Решить, нужно дано треугольник mnp и подобный треугольник m1n1p1 mn= 4 см mp= 3 см m1p1= 6 см n1p1= 10 см найти периметр mnp

👇
Ответ:
Anastasija291205
Anastasija291205
07.04.2020

Коэффициент подобия: k = MP/M₁P₁ = 3 / 6 = 1/2. Тогда NP/N₁P₁ = 1/2 откуда найдем сторону NP : NP = N₁P₁/2 = 10/2 = 5 см.


Периметр: P(MNP) = MP + NP + MN = 3 + 5 + 4 = 12 см

4,4(34 оценок)
Открыть все ответы
Ответ:
kisuli1
kisuli1
07.04.2020

Відповідь:

1. Начинать закаливающие процедуры необходимо только когда человек полностью здоров.

2. Обязательно соблюдать принцип постепенности. В начале применения закаливающих процедур у организма возникает определенная ответная реакция со стороны дыхательной, сердечно- сосудистой и центральной нервной систем. По мере неоднократного повторения этой процедуры реакция на нее организма постепенно ослабевает, а дальнейшее ее использование уже не оказывает закаливающего эффекта. Тогда надо изменить силу и длительность воздействия закаливающих процедур на организм.

3. Очень важно проводить закаливающие процедуры регулярно и без больших перерывов. Следует помнить, что проведение закаливающих процедур в течение 2-3 месяцев, а затем их прекращение приводит к тому, что закаленность организма исчезает через 3-4 недели, а у детей через 5-7 дней. В случае появления признаков заболевания закаливание временно прекращают, после выздоровления следует возобновить его с начального периода.

Пояснення:

1. Начинать закаливающие процедуры необходимо только когда человек полностью здоров.

2. Обязательно соблюдать принцип постепенности. В начале применения закаливающих процедур у организма возникает определенная ответная реакция со стороны дыхательной, сердечно- сосудистой и центральной нервной систем. По мере неоднократного повторения этой процедуры реакция на нее организма постепенно ослабевает, а дальнейшее ее использование уже не оказывает закаливающего эффекта. Тогда надо изменить силу и длительность воздействия закаливающих процедур на организм.

3. Очень важно проводить закаливающие процедуры регулярно и без больших перерывов. Следует помнить, что проведение закаливающих процедур в течение 2-3 месяцев, а затем их прекращение приводит к тому, что закаленность организма исчезает через 3-4 недели, а у детей через 5-7 дней. В случае появления признаков заболевания закаливание временно прекращают, после выздоровления следует возобновить его с начального периода.

4,8(76 оценок)
Ответ:
denisstar756
denisstar756
07.04.2020
Физический процесс протекает во времени, поэтому все физические формулы, описывающие явления материального мира во времени являются функциями, описывающими реальные физические процессы. В такие уравнения время входит в качестве переменного параметра, а не константы (как, например, в формуле для периода), либо входит опосредованно в другие величины, такие, например, как скорость, электрический ток и т.п. Некоторые уравнения описывают процессы и одновременно состояния, а поэтому не содержат непосредственно в себе параметра времени, а лишь показывают некоторые частные состояния системы, как, например уравнение Менделеева-Клайперона (уравнение идеального газа).

Уравнение равномерного движения – это функция, описывающая реальный физический процесс равномерного движения:

S = vt ;

Уравнение равномерного прямолинейного движения – это функция, описывающая реальный физический процесс прямолинейного движения в векторном виде:

\overline{r} = \overline{v}t ;

Следствие для скорости из уравнения определения ускорения – это функция, описывающая реальный физический процесс равномерного изменения скорости:

v = v_o + at , либо в векторном виде: \overline{v} = \overline{v_o} + \overline{a} t ;

Уравнение равнопеременного движения – это функция, описывающая реальный физический процесс равнопеременного движения:

S = v_o t + \frac{at^2}{2} либо в векторном виде: \overline{r} = \overline{v_o} t + \frac{ \overline{a} t^2}{2} ;

Второй Закон Ньютона – это функция, описывающая реальный физический процесс динамики движения:

a = \frac{F_\Sigma}{m} либо в векторном виде: \overline{a} = \frac{ \overline{F}_\Sigma }{m} ;

Уравнение равномерного движения по окружности – это функция, описывающая реальный физический процесс равномерного движения по окружности:

\Delta \varphi = \omega t ;

Уравнение движения при гармонических колебаниях – это функция, описывающая реальный физический процесс гармонического колебания:

\Delta x = A \cos{ ( \omega t + \varphi_o ) } ;

Следствие для скорости из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения скорости в гармоническом колебании:

v = - A \omega \cos{ ( \omega t + \varphi_o ) } ;

Следствие для ускорения из уравнения гармонических колебаний – это функция, описывающая реальный физический процесс изменения ускорения в гармоническом колебании:

a = - A \omega^2 \cos{ ( \omega t + \varphi_o ) } ;

Следствие для энергии из уравнения определения теплоёмкости – это функция, описывающая реальный физический процесс нагревания:

Q^o = C \Delta t , где C = cm , либо в удельном виде: Q^o = c m \Delta t ;

Следствие для энергии из уравнения определения теплоты плавления и кристаллизации – это функция, описывающая реальный физический процесс плавления и кристаллизации:

Q^o = \lambda m ;

Следствие для энергии из уравнения определения теплоты парообразования и конденсации – это функция, описывающая реальный физический процесс парообразования и конденсации:

Q^o = L m ;

Следствие для энергии из уравнения определения теплоты горения – это функция, описывающая реальный физический процесс горения:

Q^o = q m ;

Уравнение идеального газа – это многопараметрическая функция, описывающая все физические процессы газов низких давлений:

PV = \frac{m}{ \mu } RT ;

Уравнения определения тока – это функция, описывающая реальный физический процесс движени заряженных частиц:

I = \frac{ \Delta q }{ \Delta t } ;

Закон Фарадея – это многопараметрическая функция, описывающая гальванический процесс:

m F_\Phi z = I \Delta t , где F_\Phi = N_A e ;

Закон Ома – это функция, описывающая реальный физический процесс движения заряженных частиц в однородном проводнике:

I = \frac{U}{R} ;

Закон Джоуля-Ленца – это функция, описывающая реальный физический процесс превращения энергии в электрических цепях:

Q^o = UQ = UI \Delta t = I^2 R \Delta t = \frac{ U^2 }{R} \Delta t ,

либо в мощностном виде: P = UI = I^2 R = \frac{ U^2 }{R} ;

Закон Ампера (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на проводник с током:

F_A = B I \Delta L \sin{ \varphi } ;

Закон Лоренца (Второй Закон Максвелла) – это функция, описывающая реальный физический процесс воздействия магнитного поля на движущуюся частицу:

F_\Lambda = B v q \sin{ \varphi } ;

Закон Фарадея-Ленца электромагнитной Индукции (Третий Закон Максвелла) – это функция, описывающая реальный физический процесс порождения вихревого электрического поля при изменении магнитного поля:

U_{ind} = -\Phi'_t .
4,8(18 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ