Пусть грузоподъемность грузовиков: ф, m и а, при этом ф < m < а. Из условия, общий объем (масса) груза равняется 10ф. Из этого получаем, что 10ф / (m+а) < 5. Условие о том, что недогрузка запрещена, можно трактовать как то, что 10ф / (m+а) — это целое число. Однако, даже из этого мы получим всего лишь набор уравнений: 5ф = 2(m+а) 10ф = m+а 5ф = m+а 10ф = m+а все данные уравнения имеют решения в целых числах ответ (от 1 до 4 перевозок) Еще можно решить методом подбора,но там очень много нужно подбирать
Переписывая уравнение в виде y=-(x-2)²+3=-x²+4x-1, замечаем, что график представляет собой квадратическую параболу. Так как коэффициент при x² равен -1<0, то ветви параболы направлены вниз. Первый член -(x-2)² обращается в 0 лишь при x=2, а пи других значениях х он отрицателен. Поэтому точка x=2 является вершиной параболы, в которой функция достигает своего наибольшего значения Ymax=y(2)=-2²+4*2-1=3. То есть координаты вершины есть (2;3). Чтобы найти координаты точек пересечения параболы с осью ОХ, надо решить уравнение x²-4x+1=0. Находим дискриминант D=(-4)²-4*1*1=12=(2√3)². Тогда x1=(4+2√3)/2=2+√3, x2=(4-2√3)/2=2-√3. Значит, (2+√3;0) и (2-√3;0) - координаты точек пересечения параболы с осью ОХ. Отсюда ясно, что если с>3, то прямая y=c не пересекает параболу, при c=3 прямая y=3 имеет с параболой одну общую точку - вершину параболы. А при c<3 прямая пересекает параболу в 2 точках. ответ: при c<3.
1)
2 + 6 : 3 * 2 - (-2)³ * 1/4 = 8,
1)) 6 : 3 * 2 = 4,
2)) (-2)³ * 1/4 = -8 * 1/4 = -2,
3)) 2 + 4 - (-2) = 2 + 4 + 2 = 8,
2)
9³ : 1/3 = 729 : 1/3 = 729 * 3 = 2187,
3)
(69² - 48²) / (21*83 + 34*21) = (69 - 48)(69 + 48) / (83 + 34)*21 =
= (21 * 117) / (117 * 2) = 1