Область допустимых значений (ОДЗ): x >= -4. x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный). x - 1 < 4*V(x + 4) Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1, с учетом ОДЗ получаем -4 <= х < 1. Пусть x >= 1. Возведем обе части неравенства в квадрат (x - 1)^2 < 16*(x + 4) x^2 - 2*x + 1 < 16*x + 64 x^2 - 18*x - 63 < 0 Равенство верно на интервале между корнями уравнения. Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21. Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем ответ: -4 <= х < 21.
Весь план они вдвоем выполнили за 4/0,9 = 40/9 дня. За 1 день они вдвоем выполняли по 9/40 части плана. 1 рабочий выполнит его за x дней, по 1/х части в день. 2 рабочий выполнит его за (x+2) дней, по 1/(х+2) части в день. 1/x + 1/(x+2) = 9/40 Умножаем все на 40x(x+2) 40(x+2) + 40x = 9x(x+2) 40x + 80 + 40x = 9x^2 + 18x 9x^2 - 62x - 80 = 0 D = 62^2 + 4*9*80 = 3844 + 2880 = 6724 = 82^2 x1 = (62 - 82)/18 = -10/18 < 0 x2 = (62 + 82)/18 = 144/18 = 8 x = 8 - за это время 1 рабочий сделает весь план. x+2 = 10 - за это время 2 рабочий сделает весь план.
ответ: (-1; 3)