Функция является сложной, так как выражение под корнем имеет выражение х - 2;
Функция имеет квадратный корень;
Из квадратного корня, не возможно извлечь отрицательное число;
Область определения функции - это те значения х, которое можно подставить в функцию. Отсюда делаем вывод, что областью определения функции является выражение под корнем больше или равно 0.
Находим область определения функции
Выражение под корнем равно х - 2. Так как, оно должно быть больше или равно 0, то отсюда получаем:
x - 2 > = 0;
Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x > = 0 + 2;
x > = 2;
Значит, областью определения функции y = √(x - 2) является промежуток x > = 2;
Проверка
Подставим значение х = 6, которое удовлетворяет условию x > = 2 в функцию y = √(x - 2), тогда получим:
y = √(6 - 2);
y = √4;
y = 2;
Значит, при х > = 2 из квадратного корня извлекаются положительные числа. Если же, если было бы < 2, то квадратный корень из отрицательного числа не извлекается.
Допустим, что у нас есть все числа от 20 до 49 в ряд. как проверить будет делиться это число на 11 или нет. по признаку: нужно сложить числа на четных местах и затем на нечетных, вычесть из одного числа другое и если получиться число, которое делиться на 11 или ноль, то исходное число будет делиться на 11. Так и сделаем. Так как мы записывали подряд двузначные числа, но на нечетных буду стоять десятки этих чисел, а на нечетных - единицы. значит на нечетных общая сумма будет: 2·10+3·10+4·10=90 а на четных: 3·(0+1+2+3+4+5+6+7+8+9)=3·45=135 находим разность 135-90=45 это число на 11 не делиться. Находим ближайшее к нему (так как спрашивается минимальное!! отсутствующее число) это будет 44. Значит нам нужно уменьшить разность на единицу. Так как у нас двузначные числа, то нужно, что бы разность между единицами и десятками в отсутствующем числе была 1, а минимальным таким числом будет 23. И так, если его не будет у нас на нечетных общая сумма будет: 2·9+3·10+4·10=88 а на четных: 3·(0+1+2+4+5+6+7+8+9)+2·3=132 тогда разность: 132-88=44 а оно делиться на 11. ответ: 23
ответ:√(x - 2) является x > = 2.
Объяснение:
Опишем функцию для нахождения области определения
Функция является сложной, так как выражение под корнем имеет выражение х - 2;
Функция имеет квадратный корень;
Из квадратного корня, не возможно извлечь отрицательное число;
Область определения функции - это те значения х, которое можно подставить в функцию. Отсюда делаем вывод, что областью определения функции является выражение под корнем больше или равно 0.
Находим область определения функции
Выражение под корнем равно х - 2. Так как, оно должно быть больше или равно 0, то отсюда получаем:
x - 2 > = 0;
Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
x > = 0 + 2;
x > = 2;
Значит, областью определения функции y = √(x - 2) является промежуток x > = 2;
Проверка
Подставим значение х = 6, которое удовлетворяет условию x > = 2 в функцию y = √(x - 2), тогда получим:
y = √(6 - 2);
y = √4;
y = 2;
Значит, при х > = 2 из квадратного корня извлекаются положительные числа. Если же, если было бы < 2, то квадратный корень из отрицательного числа не извлекается.