
a+b+p·(a+b) =(a+b)·(1+p)
x+2·a·(x-y)-y =(x-y)·(1+2·a)
a·(a+b)-5·a-5·b=(a+b)·(a-5)
8·x-8·y+a·x-a·y=(x-y)·(8+a)
p·q-x-p·x+q= (p+1)·(q-x)
Объяснение:
a+b+p·(a+b) =1·(a+b)+p·(a+b)=(a+b)·(1+p)
x+2·a·(x-y)-y =1·(x-y)+2·a·(x-y)=(x-y)·(1+2·a)
a·(a+b)-5·a-5·b =a·(a+b)-5·(a+b)=(a+b)·(a-5)
8·x-8·y+a·x-a·y =8·(x-y)+a·(x-y)=(x-y)·(8+a)
p·q-x-p·x+q= p·q+q -x-p·x=q·(p+1)-x(1+p)=(p+1)·(q-x)
Sin(x - 2) = sin x - sin 2 sin x*cos 2 - cos x*sin 2 = sin x - sin 2 0 = sin x*(1 - cos 2) + cos x*sin 2 - sin 2 Переходим к половинным аргументам 2sin(x/2)*cos(x/2)*(1 - cos 2) + sin 2*(cos^2(x/2) - sin^2(x/2)) - - sin 2*(cos^2(x/2) + sin^2(x/2)) = 0 -sin^2(x/2)*(sin 2 + sin 2) + 2sin(x/2)*cos(x/2)*(1 - cos 2) + + cos^2(x/2)*(sin 2 - sin 2) = 0 -2sin 2*sin^2(x/2) + 2sin(x/2)*cos(x/2)*(1 - cos 2) = 0 2sin(x/2)*(cos(x/2)*(1 - cos 2) - sin(x/2)*sin 2) = 0 1) sin(x/2) = 0; x/2 = pi*k; x = 2pi*k 2) cos(x/2)*(1 - cos 2) - sin(x/2)*sin 2 = 0 cos(x/2)*(1 - cos 2) = sin(x/2)*sin 2 tg(x/2) = (1 - cos 2)/sin 2 x/2 = arctg((1 - cos 2)/sin 2) + pi*n x = 2arctg((1 - cos 2)/sin 2) + 2pi*n Еще подходит x = 2 sin (2 - 2) = sin 2 - sin 2 sin 0 = 0