Как оказалось, все элементарно, Ватсон!:) Я кину Вам в ЛС ссылочку на полезную информацию по данной теме, а пока что само решение!
Итак, сначала разберемся, что от нас хотят. Абсцисса (это значения независимой переменной х) должна быть положительной, то есть x>0, а ордината (это значения зависимой переменной у) отрицательной, то есть y<0. Теперь изучим заданную функцию: y=100x+b является линейной функцией вида у=кх+b. По свойству функции график функции пересекает ось Ох в точке , а ось Оу - в точке (0; b). Значит х будет больше нуля при Т.к. к=100, то получим неравенство . Следовательно при b<0 наша функция пересечет ось Ох в точке с положительным значением х, а ось Оу в точке с отрицательным значением у.
Чтобы парабола не имела решений надо чтобы ее значение было всегда больше нуля при любых x при некоторых тк парабола всегда положительна то если рассуждать графически то она не должна пересекать оси абсцис тк вышло бы что она может принимать и пол и отриц знач а тогда чтобы этого не произошло ее ветви должны быть расположены вверх то есть a>0 ,но тк a=1 то это условие выполняется.но тут есть еще 1 условие чтобы yв>0 то есть ее минимальное значение было выше оси обсцис.оно не может лежать на ней тк в задании неравенство строгое ,а решений быть не должно. Таким образом должно вы подняться неравенство yв=-d/4a чтоD=(2a+3)^2-4*(6a+1)=4a^2-12a+5 тогда yв=-4a^2+12a-5/4>0 умножим обе части на -4 получим не забывая менять знак неравенства 4a^2-12a+5<0 ищем корни нашего трехчлена D/4=36-20=16=4^2 a1=(6+4)/4=2,5 a2=(6-4)/4=1/2 раставляем знаки на координатной прямой в итоге нужный интервал где стоит минус a{0,5;2,5} то есть ответ :a{0,5;2,5} надеюсь понятно объяснил?