Решение: Расстояние от пункта А до пункта В составляет S (км) Автомобили двигаясь навстречу друг другу, встретились через t (часов), причём каждый из них проехал расстояние: -первый автомобиль S1 (км) -второй автомобиль S2 (км) Следовательно расстояние от пункта А до пункта В составляет: S=S1+S2 Значит первому автомобилю чтобы доехать до пункта В, осталось преодолеть расстояние S2 Каждый из автомобилей проехал расстояние S1 и S2 за t (часов), -первый автомобиль за время t со скоростью 80км/час проехал расстояние: S1=80*t --второй автомобиль за время t со скоростью 70км/час проехал расстояние: S2=70*t Из условия задачи следует,что через час после встречи ( а первый автомобиль двигаясь со скоростью 80км/час, проехал за 1 час расстояние 80км), осталось проехать ещё 60км, значит: S2=80км+60км=140км, получилось, что S=S1+S2=(80t+140) км t можно найти: S2/V=140/70=2 (часа) Подставим значение t=2 в формулу: S=80t+140 S=80*2+140=160+140=300 (км)
ответ: Расстояние от пункта А до пункта В составляет 300км
Ну и ещё переходим к старшему разряду тысяч (в обратном порядке):
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 8 = 12 , у квадрата вдвое больше.
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .
А теперь всё обобщим на самый общий случай.
Если бы число записывалось единицей с R нолями, то его квадрат содержал бы уже 2R нолей, при этом в исходном числе было бы (R+1) цифр, а в квадрате числа – (2R+1) цифр.
Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в обратном порядке:
( 99999 : : : R цифр : : : 99999 ) – это число на единицу меньше, чем число ( 100000 : : : R нулей : : : 00000 ) , в котором (R+1) цифр.
квадрат числа [( 99999 : : : R цифр : : : 99999 )] – это число, меньшее, чем число ( 100000 : : : 2R нулей : : : 00000 ) , в котором (2R+1) цифр.
Значит, квадрат числа ( 99999 : : : R цифр : : : 99999 ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.
в числе ( 400000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 400000 : : : (R–1) нулей : : : 00000 )] = = ( 1600000 : : : (2R–2) нулей : : : 00000 ) содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.
в числе ( 300000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 300000 : : : (R–1) нулей : : : 00000 )] = = ( 900000 : : : (2R–2) нулей : : : 00000 ) содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.
в числе ( 100000 : : : (R–1) нулей : : : 00000 ) содержится R цифр.
квадрат числа [( 100000 : : : (R–1) нулей : : : 00000 )] = = ( 100000 : : : (2R–2) нулей : : : 00000 ) содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.
И так будет для любого R
R = 1 : : : сумма: 3R = 3 или (3R–1) = 2 . R = 2 : : : сумма: 3R = 6 или (3R–1) = 5 . R = 3 : : : сумма: 3R = 9 или (3R–1) = 8 . R = 4 : : : сумма: 3R = 12 или (3R–1) = 11 . R = 5 : : : сумма: 3R = 15 или (3R–1) = 14 .
. . .
R = 32 : : : сумма: 3R = 96 или (3R–1) = 95 . R = 33 : : : сумма: 3R = 99 или (3R–1) = 98 . R = 34 : : : сумма: 3R = 102 или (3R–1) = 101 . R = 35 : : : сумма: 3R = 105 или (3R–1) = 104 .
В самом деле, между предыдущим и последующим значениями, кратными трём, всегда содержатся два целые числа, а искомой суммой, помимо 3R, может быть только одно из них: (3R–1) .
Поэтому, значения, подчиняющиеся закону (3R+1) не могут быть искомым результатом. Так, например, число 99 – кратно трём ( 99 = 3*33 ), а значит, число 100 = 3*33+1 никак не могло бы оказаться в расчётах Лены.
О т в е т : у Лены не могли получиться результаты, подчиняющиеся закону (3R+1) , где R – какое угодно целое число.
ну и, конечно, все результаты Лены могут быть только положительными, поскольку это количества, т.е. натуральные величины.
a(n) - ap пр
a(2) = 4
a(12) = 16
a(7) -?
cистема:
{a(2) = a(1) +d {4 = a(1) + d <=> {a(1) = 4-d {a(1) =2.8
{a(12) = a(1) + 11d <=> {16 = a(1) + 11d {16 = 4-d+11d <=> { d = 1.2
a(7) = a(1) + 6d
a(7) = 2.8 + 6 * 1.2
a(7) = 2.8 + 7.2
a(7)= 10